Concepts associés (23)
Interprétation (logique)
En logique, une interprétation est une attribution de sens aux symboles d'un langage formel. Les langages formels utilisés en mathématiques, en logique et en informatique théorique ne sont définis dans un premier temps que syntaxiquement⁣ ; pour en donner une définition complète, il faut expliquer comment ils fonctionnent et en donner une interprétation. Le domaine de la logique qui donne une interprétation aux langages formels s'appelle la sémantique formelle.
Complétude (logique)
En logique mathématique et métalogique, un système formel est dit complet par rapport à une propriété particulière si chaque formule possédant cette propriété peut être prouvée par une démonstration formelle à l'aide de ce système, c'est-à-dire par l'un de ses théorèmes ; autrement, le système est dit incomplet. Le terme « complet » est également utilisé sans qualification, avec des significations différentes selon le contexte, la plupart du temps se référant à la propriété de la validité sémantique.
Logique de la prouvabilité
Provability logic is a modal logic, in which the box (or "necessity") operator is interpreted as 'it is provable that'. The point is to capture the notion of a proof predicate of a reasonably rich formal theory, such as Peano arithmetic. There are a number of provability logics, some of which are covered in the literature mentioned in . The basic system is generally referred to as GL (for Gödel–Löb) or L or K4W (W stands for well-foundedness). It can be obtained by adding the modal version of Löb's theorem to the logic K (or K4).
Intermediate logic
In mathematical logic, a superintuitionistic logic is a propositional logic extending intuitionistic logic. Classical logic is the strongest consistent superintuitionistic logic; thus, consistent superintuitionistic logics are called intermediate logics (the logics are intermediate between intuitionistic logic and classical logic). A superintuitionistic logic is a set L of propositional formulas in a countable set of variables pi satisfying the following properties: 1. all axioms of intuitionistic logic belong to L; 2.
Logique modale normale
En logique, une logique modale normale est un ensemble L de formules modales tel que L contient: Toutes les tautologies propositionnelles; Toutes les instances du schéma de Kripke: et est limité sous: Règle détachement (Modus Ponens): ; règle de nécessitation: implique . La plus petite logique répondant aux conditions ci-dessus est appelé K. La plupart des logiques modales couramment utilisés de nos jours (en termes de motivations philosophiques), par exemple Le S4 et S5 de C. I. Lewis, sont des extensions de K.
Logique déontique
vignette|"Justicia", Giotto di Bondone (1267-1337), Capilla Scrovegni, Padoue, Italie. La logique déontique (du grec déon, déontos : devoir, ce qu'il faut, ce qui convient) tente de formaliser les rapports qui existent entre les quatre caractéristiques d'une loi : l'obligation, l'interdiction, la permission et le facultatif. Gottfried Wilheim Leibniz en 1670 proposa le premier d'appliquer la logique modale à la morale en remarquant l'analogie suivante : .
Interior algebra
In abstract algebra, an interior algebra is a certain type of algebraic structure that encodes the idea of the topological interior of a set. Interior algebras are to topology and the modal logic S4 what Boolean algebras are to set theory and ordinary propositional logic. Interior algebras form a variety of modal algebras. An interior algebra is an algebraic structure with the signature ⟨S, ·, +, ′, 0, 1, I⟩ where ⟨S, ·, +, ′, 0, 1⟩ is a Boolean algebra and postfix I designates a unary operator, the interior operator, satisfying the identities: xI ≤ x xII = xI (xy)I = xIyI 1I = 1 xI is called the interior of x.
Théorie complète
En logique mathématique, une théorie complète est une théorie qui est équivalente à un ensemble maximal cohérent de propositions ; ceci signifie qu'elle est cohérente et que toute extension propre ne l'est plus. Pour des théories logiques qui contiennent la logique propositionnelle classique, ceci équivaut à la condition que pour toute proposition φ du langage de la théorie, soit elle contient φ, soit elle contient sa négation ¬φ.
Algèbre modale
En algèbre et en logique, une algèbre modale est une structure tel que est une algèbre de Boole (structure), est un opérateur unaire sur A satisfaisant et pour tout x, y dans A. Une algèbre modale fourni des modèles de logiques modales propositionnel de la même manière que les algèbres booléennes sont des modèles de la logique classique. En particulier, la variété de toutes algèbres modales est la sémantique algébrique équivalentes de la logique modale K dans le sens de la logique algébrique abstraite, et le treillis de ses sous-variétés est duellement isomorphe au treillis de logiques modales normales.
Topos (mathématiques)
En mathématiques, un topos (au pluriel topos ou topoï) est un type particulier de catégorie. La théorie des topoï est polyvalente et est utilisée dans des domaines aussi variés que la logique, la topologie ou la géométrie algébrique. Un topos peut être défini comme une catégorie pourvue : de limites et colimites finies ; d'exponentielles ; d'un . D'autres définitions équivalentes sont données plus bas.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.