Groupe de GaloisEn mathématiques, et plus spécifiquement en algèbre dans le cadre de la théorie de Galois, le groupe de Galois d'une extension de corps L sur un corps K est le groupe des automorphismes de corps de L laissant K invariant. Le groupe de Galois est souvent noté Gal(L/K). Si l'extension possède de bonnes propriétés, c’est-à-dire si elle est séparable et normale, on parle alors d'extension de Galois et les hypothèses du théorème fondamental de la théorie de Galois sont réunies.
Racine d'un nombreEn mathématiques, une racine n-ième d'un nombre a est un nombre b tel que b = a, où n est un entier naturel non nul. Selon que l'on travaille dans l'ensemble des réels positifs, l'ensemble des réels ou l'ensemble des complexes, le nombre de racines n-ièmes d'un nombre peut être 0, 1, 2 ou n. Pour un nombre réel a positif, il existe un unique réel b positif tel que b = a. Ce réel est appelé la racine n-ième de a (ou racine n-ième principale de a) et se note avec le symbole radical () ou a.
Théorème d'Abel (algèbre)En mathématiques et plus précisément en algèbre, le théorème d'Abel, parfois appelé théorème d'Abel-Ruffini ou encore théorème de Ruffini, indique que pour tout entier n supérieur ou égal à 5, il n'existe pas de formule générale exprimant « par radicaux » les racines d'un polynôme quelconque de degré n, c'est-à-dire de formule n'utilisant que les coefficients, la valeur 1, les et l'extraction des racines n-ièmes.
Équation quintiqueEn mathématiques, une équation quintique est une équation polynomiale dans laquelle le plus grand exposant de l'inconnue est 5. Elle est de forme générale : où a, b, c, d, e et f appartiennent à un corps commutatif (habituellement les rationnels, les réels ou les complexes), et a est non nul. La fonctionest une fonction quintique. Parce qu'elles ont un degré impair, les fonctions quintiques normales apparaissent similaires aux fonctions cubiques normales lorsqu'elles sont tracées, excepté sur le nombre de maxima locaux et minima locaux.
Groupe simpleEn mathématiques, un groupe simple est un groupe non trivial qui ne possède pas de sous-groupe distingué autre que lui-même et son sous-groupe trivial. Un groupe est dit simple s'il a exactement deux sous-groupes distingués : ( étant l’élément neutre du groupe) et lui-même. Quelques exemples de groupes simples : Les seuls groupes abéliens simples sont les groupes finis d'ordre premier (ces groupes sont cycliques). Le groupe SO_3(R) des matrices spéciales orthogonales d'ordre 3 à coefficients réels est simple.
Joseph-Louis LagrangeJoseph Louis de Lagrange (en italien Giuseppe Luigi Lagrangia ou aussi Giuseppe Ludovico De la Grange Tournier), né à Turin le de parents français descendants de Descartes et mort à Paris le , est un mathématicien, mécanicien et astronome italien, originaire du royaume de Sardaigne et naturalisé français. À l'âge de trente ans, il quitte Turin et va séjourner à Berlin pendant vingt-et-un ans. Ensuite, il s'installe pour ses vingt-six dernières années à Paris où il prend la nationalité française en 1802.
Groupe alternéEn mathématiques, et plus précisément en théorie des groupes, le groupe alterné de degré n, souvent noté An, est un sous-groupe distingué du groupe symétrique des permutations d'un ensemble fini à n éléments. Ce sous-groupe est constitué des permutations produits d'un nombre pair de transpositions. Une transposition est une permutation qui échange deux éléments et fixe tous les autres. Il existe un groupe alterné pour chaque entier n supérieur ou égal à 2 ; il se note habituellement An (ou parfois en écriture Fraktur) et possède n!/2 éléments.
PermutationEn mathématiques, la notion de permutation exprime l'idée de réarrangement d'objets discernables. Une permutation d'objets distincts rangés dans un certain ordre correspond à un changement de l'ordre de succession de ces objets. La permutation est une des notions fondamentales en combinatoire, c'est-à-dire pour des problèmes de dénombrement et de probabilités discrètes. Elle sert ainsi à définir et à étudier le carré magique, le carré latin, le sudoku, ou le Rubik's Cube.