Concepts associés (12)
Semisimple Lie algebra
In mathematics, a Lie algebra is semisimple if it is a direct sum of simple Lie algebras. (A simple Lie algebra is a non-abelian Lie algebra without any non-zero proper ideals). Throughout the article, unless otherwise stated, a Lie algebra is a finite-dimensional Lie algebra over a field of characteristic 0. For such a Lie algebra , if nonzero, the following conditions are equivalent: is semisimple; the Killing form, κ(x,y) = tr(ad(x)ad(y)), is non-degenerate; has no non-zero abelian ideals; has no non-zero solvable ideals; the radical (maximal solvable ideal) of is zero.
Wilhelm Killing
Wilhelm Karl Joseph Killing ( – ) est un mathématicien allemand connu pour ses nombreuses contributions aux théories des algèbres de Lie et des groupes de Lie et à la géométrie non euclidienne. Le père de Killing fut d'abord greffier avant d'exercer les charges de bourgmestre, ce qui amena la famille à déménager à de nombreuses reprises. Killing fut d'abord élève au lycée de Brilon, où il reçut une formation poussée en lettres classiques, tout en découvrant par un de ses professeurs sa passion pour la géometrie.
Structure constants
In mathematics, the structure constants or structure coefficients of an algebra over a field are the coefficients of the basis expansion (into linear combination of basis vectors) of the products of basis vectors. Because the product operation in the algebra is bilinear, by linearity knowing the product of basis vectors allows to compute the product of any elements (just like a matrix allows to compute the action of the linear operator on any vector by providing the action of the operator on basis vectors).
Système de racines
En mathématiques, un système de racines est une configuration de vecteurs dans un espace euclidien qui vérifie certaines conditions géométriques. Cette notion est très importante dans la théorie des groupes de Lie. Comme les groupes de Lie et les groupes algébriques sont maintenant utilisés dans la plupart des parties des mathématiques, la nature apparemment spéciale des systèmes de racines est en contradiction avec le nombre d'endroits dans lesquels ils sont appliqués.
Représentation adjointe
En mathématiques, il existe deux notions de représentations adjointes : la représentation adjointe d'un groupe de Lie sur son algèbre de Lie, la représentation adjointe d'une algèbre de Lie sur elle-même. Alors que la première est une représentation de groupe, la seconde est une représentation d'algèbre. Soient : un groupe de Lie ; l'élément identité de ; l'algèbre de Lie de ; l'automorphisme intérieur de sur lui-même, donné par .
Cartan matrix
In mathematics, the term Cartan matrix has three meanings. All of these are named after the French mathematician Élie Cartan. Amusingly, the Cartan matrices in the context of Lie algebras were first investigated by Wilhelm Killing, whereas the Killing form is due to Cartan. A (symmetrizable) generalized Cartan matrix is a square matrix with integral entries such that For diagonal entries, . For non-diagonal entries, . if and only if can be written as , where is a diagonal matrix, and is a symmetric matrix.
Real form (Lie theory)
In mathematics, the notion of a real form relates objects defined over the field of real and complex numbers. A real Lie algebra g0 is called a real form of a complex Lie algebra g if g is the complexification of g0: The notion of a real form can also be defined for complex Lie groups. Real forms of complex semisimple Lie groups and Lie algebras have been completely classified by Élie Cartan. Using the Lie correspondence between Lie groups and Lie algebras, the notion of a real form can be defined for Lie groups.
Groupe spécial unitaire
En mathématiques, le groupe spécial unitaire de E, où E est un espace hermitien, est le groupe des automorphismes unitaires de E de déterminant 1, la loi de composition interne considérée étant la composition d’automorphismes. Il est noté SU(E). C’est un sous-groupe de U(E), le groupe unitaire des automorphismes de E. De manière générale, on peut définir le groupe spécial unitaire d'une forme sesquilinéaire hermitienne complexe non dégénérée, ou d'une forme sesquilinéaire hermitienne ou antihermitienne non dégénérée sur un espace vectoriel de dimension finie sur certains corps (commutatifs ou non) relativement à une involution.
Algèbre de Lie
En mathématiques, une algèbre de Lie, nommée en l'honneur du mathématicien Sophus Lie, est un espace vectoriel qui est muni d'un crochet de Lie, c'est-à-dire d'une loi de composition interne bilinéaire, alternée, et qui vérifie la relation de Jacobi. Une algèbre de Lie est un cas particulier d'algèbre sur un corps. Soit K un corps commutatif. Une algèbre de Lie sur K est un espace vectoriel sur K muni d'une application bilinéaire de dans qui vérifie les propriétés suivantes : Le produit est appelé crochet de Lie (ou simplement crochet) de et .
Algèbre enveloppante
En mathématiques, on peut construire l'algèbre enveloppante d'une algèbre de Lie . Il s'agit d'une algèbre associative unitaire qui permet de rendre compte de la plupart des propriétés de . Algèbre de Lie Soit K un corps commutatif de caractéristique différente de 2. Une algèbre de Lie sur K est un espace vectoriel muni d'une application bilinéaire de dans qui vérifie les propriétés suivantes : Tout espace vectoriel peut être muni d'une structure d'algèbre de Lie, en posant .

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.