Explore les algorithmes de consensus dans les systèmes de contrôle en réseau, couvrant des sujets tels que les modèles Metropolis-Hasting et le calcul distribué de régression des moins-quaires.
Explore le consensus avec les nœuds GR dans les systèmes de contrôle en réseau, en mettant l'accent sur les graphiques de condensation et le résultat principal.
Explore des matrices irréductibles et une forte connectivité dans les systèmes de commande en réseau, soulignant l'importance des matrices d'adjacence et des structures graphiques.
Explore le théorème de consensus pour les réseaux de communication et les implications de diverses propriétés de consensus dans les systèmes de contrôle en réseau.
Explore la convergence des puissances de la matrice d'adjacence et du théorème de consensus pour les matrices primitives et stochastiques, en mettant l'accent sur les propriétés spectrales et les systèmes de contrôle en réseau.