Couvre l'inférence, la construction de modèles, la sélection de variables, la robustesse, la régression régularisée, les modèles mixtes et les méthodes de régression.
Couvre la régression non paramétrique à l'aide de techniques d'estimation basées sur le noyau pour modéliser des relations complexes entre les variables.
Explore les concepts avancés dans les modèles de régression linéaire, y compris la multicolinéarité, les tests d'hypothèses et les valeurs aberrantes de manipulation.
Couvre la régression linéaire et logistique pour les tâches de régression et de classification, en mettant l'accent sur les fonctions de perte et la formation de modèle.
Discute de la méthode de gradient pour l'optimisation, en se concentrant sur son application dans l'apprentissage automatique et les conditions de convergence.
S'insère dans l'analyse de régression, en mettant l'accent sur le rôle des prédicteurs linéaires dans le rapprochement des résultats et en discutant des modèles linéaires généralisés et des techniques d'inférence causale.
Couvre les bases de la régression linéaire dans l'apprentissage automatique, y compris la formation des modèles, les fonctions de perte et les mesures d'évaluation.
Couvre la modélisation de la dépendance temporelle dans les séries chronologiques, y compris la tendance, les composantes périodiques, la régression, la stationnarité, l'autocorrélation et les essais d'indépendance.