Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore le filtre Kalman pour l'estimation et la prédiction de l'état dans un cadre gaussien linéaire, en mettant l'accent sur l'optimalité du prédicteur et du filtre.
Introduit le filtre Kalman pour estimer l'état d'un système dynamique à partir de mesures bruyantes, couvrant la prédiction, la mise à jour et les étapes de filtrage.
Explore la distribution de Wishart, les propriétés des matrices de Wishart, et la distribution de T2 de Hotelling, y compris la statistique T2 de deux exemples Hotelling.
Explore la génération de vecteurs aléatoires gaussiens avec des composantes spécifiques basées sur des valeurs observées et explique le concept de fonctions de covariance définies positives dans les processus gaussiens.
Explorer la théorie principale de l'analyse des composants, les propriétés, les applications et les tests d'hypothèse dans les statistiques multivariées.