Explore le filtre Kalman pour l'estimation et la prédiction de l'état dans un cadre gaussien linéaire, en mettant l'accent sur l'optimalité du prédicteur et du filtre.
Explore la distribution de Wishart, les propriétés des matrices de Wishart, et la distribution de T2 de Hotelling, y compris la statistique T2 de deux exemples Hotelling.
Explorer l'estimation du rétrécissement des matrices de covariance à haute dimension, en comparant les approches linéaires et non linéaires pour une meilleure précision.
Couvre les matrices définies non négatives, les matrices de covariance et l'analyse en composantes principales pour une réduction optimale des dimensions.
Explore les modèles ARCH et GARCH, le regroupement de volatilité, les séries chronologiques, l'estimation et les étapes de filtrage dans les contextes financier et macroéconomique.