Polymèrevignette|Fibres de polyester observées au Microscopie électronique à balayage. vignette|La fabrication d'une éolienne fait intervenir le moulage de composites résines/renforts. Les polymères (étymologie : du grec polus, plusieurs, et meros, partie) constituent une classe de matériaux. D'un point de vue chimique, un polymère est une substance composée de macromolécules et issue de molécules de faible masse moléculaire. Un polymère est caractérisé par le degré de polymérisation.
Limite projectiveEn mathématiques, dans la formalisation du langage des catégories, la limite projective est une généralisation du produit. Cette notion est duale de celle de limite inductive. Soient un ensemble ordonné, une famille d'ensembles indexée par , et pour chaque couple tel que , une application . On suppose que ces applications vérifient les deux propriétés suivantes : Une telle structure est appelée système projectif d'ensembles.
Propriété universelleEn mathématiques, et plus précisément en théorie des catégories, une propriété universelle est la propriété des objets qui sont la solution d'un problème universel posé par un foncteur. De très nombreux objets classiques des mathématiques, comme la notion de produit cartésien, de groupe quotient, ou de compactifié, peuvent être définis comme des solutions de problèmes universels.
Limite (théorie des catégories)La notion de limite est une construction catégorique abstraite, qui rend compte d'objets tels que les produits, les produits fibrés et les limites projectives. La construction duale, la colimite, rend compte entre autres des coproduits, sommes amalgamées et limites inductives. Dans certains cas, cette notion coïncide avec la limite au sens de l'analyse. Soit une catégorie. On considère un diagramme dans , traduit par un foncteur . Dans de nombreux cas, on considère une petite catégorie, voire finie, et on parle respectivement de petit diagramme ou de diagramme fini.
Limite inductiveEn mathématiques, et plus particulièrement en théorie des catégories et en algèbre universelle, la notion de limite inductive généralise à des structures la notion classique de limite issue de l'analyse. La limite inductive est un cas particulier de colimite en théorie des catégories. Comme sa duale, la limite projective, elle est conceptuellement très proche de la notion de limite rencontrée en analyse et coïncide avec elle dans certains cas. Un premier point clef est la notion de passage à la limite.
Limite (mathématiques)En analyse mathématique, la notion de limite décrit l’approximation des valeurs d'une suite lorsque l'indice tend vers l’infini, ou d'une fonction lorsque la variable se rapproche d’un point (éventuellement infini) au bord du domaine de définition. Si une telle limite existe dans l’ensemble d’arrivée, on dit que la suite ou la fonction est convergente (au point étudié). Si ce n’est pas le cas, elle est divergente, comme dans le cas de suites et fonctions périodiques non constantes (telle la fonction sinus en +∞).
Loi de comportementLes lois de comportement de la matière, étudiées en science des matériaux et notamment en mécanique des milieux continus, visent à modéliser le comportement des fluides ou solides par des lois empiriques lors de leur déformation. Les modèles ci-dessous sont volontairement simplifiés, afin de permettre d'appréhender les notions élémentaires.
Tenseur des contraintesLe tenseur des contraintes est un tenseur d'ordre 2 utilisé en mécanique des milieux continus pour caractériser l'état de contrainte, c'est-à-dire les efforts intérieurs mis en jeu entre les portions déformées d'un milieu. Le terme a été introduit par Cauchy vers 1822. Comme les efforts intérieurs sont définis pour chaque surface coupant le milieu (on parle d'ailleurs également d'efforts surfaciques), le tenseur est défini localement, en chaque point du solide. L'état de contrainte du solide est donc représenté par un champ tensoriel.
Limite supérieure et limite inférieurevignette|upright=1.8|Exemple de recherche de limites inférieure et supérieure. La suite (x) est représentée en bleu. En mathématiques, plus précisément en analyse réelle, les limites inférieures et supérieures sont des outils d'étude des suites de nombres réels. Une telle suite n'est en général ni monotone, ni convergente. L'introduction des limites supérieure et inférieure permet de retrouver, partiellement, de telles propriétés. Il s'agit d'un cas particulier de valeurs d'adhérence de la suite.
Contrainte de cisaillementvignette|Une force est appliquée à la partie supérieure d'un carré, dont la base est bloquée. La déformation en résultant transforme le carré en parallélogramme. Une contrainte de cisaillement τ (lettre grecque « tau ») est une contrainte mécanique appliquée parallèlement à la section transversale d'un élément allongé, par opposition aux contraintes normales qui sont appliquées perpendiculairement à cette surface (donc longitudinalement, c.-à-d. selon l'axe principal de la pièce). C'est le rapport d'une force à une surface.