Produit directLa plupart des structures algébriques permettent de construire de façon très simple une structure produit sur le produit cartésien des ensembles sous-jacents. Plus généralement, . C'est le cas de la topologie produit dans la catégorie des espaces topologiques. Soient E un ensemble muni d'une loi de composition interne et F un ensemble muni d'une loi de composition interne . On peut définir une loi de composition interne sur le produit cartésien E×F de la façon suivante : Si et sont associatives, alors la loi est associative.
Produit direct (groupes)En mathématiques, et plus particulièrement en théorie des groupes, le produit direct d'une famille de groupes est une structure de groupe qui se définit naturellement sur le produit cartésien des ensembles sous-jacents à ces groupes. Soient et deux groupes. Désignons par leur produit cartésien (ou, plus exactement, le produit cartésien de leurs ensembles sous-jacents). Il est naturel de définir sur une loi de composition composante par composante : le produit apparaissant dans le second membre étant calculé dans et le produit dans .
Direct sumThe direct sum is an operation between structures in abstract algebra, a branch of mathematics. It is defined differently, but analogously, for different kinds of structures. To see how the direct sum is used in abstract algebra, consider a more elementary kind of structure, the abelian group. The direct sum of two abelian groups and is another abelian group consisting of the ordered pairs where and . To add ordered pairs, we define the sum to be ; in other words addition is defined coordinate-wise.
Produit semi-directEn théorie des groupes, le produit semi-direct permet de définir un groupe G à partir de deux groupes H et K, et généralise la notion de produit direct de deux groupes. Un groupe G est produit semi-direct interne d'un sous-groupe normal H par un sous-groupe K si et seulement si l'une des définitions équivalentes suivantes est vérifiée : (en d'autres termes, H et K sont compléments l'un de l'autre dans G) ; (tout élément de G s'écrit de manière unique comme produit d'un élément de H et d'un élément de K) ; la restriction à K de la surjection canonique est un isomorphisme entre et ; la surjection canonique se scinde par un morphisme tel que .
Direct sum of groupsIn mathematics, a group G is called the direct sum of two normal subgroups with trivial intersection if it is generated by the subgroups. In abstract algebra, this method of construction of groups can be generalized to direct sums of vector spaces, modules, and other structures; see the article direct sum of modules for more information. A group which can be expressed as a direct sum of non-trivial subgroups is called decomposable, and if a group cannot be expressed as such a direct sum then it is called indecomposable.
Produit d'anneauxEn algèbre générale, il est possible de combiner plusieurs anneaux pour former un anneau appelé anneau produit. Cette construction peut se faire de la manière suivante : si (Ai) est une famille d'anneaux, le produit cartésien Π Ai peut être muni d'une structure d'anneau en définissant les opérations composante par composante, i.e. (ai) + (bi) = (ai + bi) (ai) · (bi) = (ai · bi) 1 = (1) À la place de Π1≤i≤k Ai nous pouvons aussi écrire A1 × A2 × ... × Ak. Un exemple est l'anneau Z/nZ des entiers modulo n.
Somme directeEn mathématiques, et plus précisément en algèbre, le terme de somme directe désigne des ensembles munis de certaines structures, souvent construits à partir du produit cartésien d'autres ensembles du même type, et vérifiant la propriété universelle de la somme (ou « coproduit ») au sens des catégories. Produit direct (groupes)#Somme directe interne d'une famille de sous-groupes abéliensSomme directe interne de sous-groupes abéliens Soient F et F deux sous-espaces vectoriels d'un espace vectoriel E.
Action de groupe (mathématiques)En mathématiques, une action d'un groupe sur un ensemble est une loi de composition externe du groupe sur l'ensemble, vérifiant des conditions supplémentaires. Plus précisément, c'est la donnée, pour chaque élément du groupe, d'une permutation de l'ensemble, de telle manière que toutes ces bijections se composent de façon compatible avec la loi du groupe. Étant donné un ensemble E et un groupe G, dont la loi est notée multiplicativement et dont l'élément neutre est noté e, une action (ou opération) de G sur E est une application : vérifiant chacune des 2 propriétés suivantes : On dit également que G opère (ou agit) sur l'ensemble E.
Groupe (mathématiques)vignette|Les manipulations possibles du Rubik's Cube forment un groupe. En mathématiques, un groupe est une des structures algébriques fondamentales de l'algèbre générale. C'est un ensemble muni d'une loi de composition interne associative admettant un élément neutre et, pour chaque élément de l'ensemble, un élément symétrique. La structure de groupe est commune à de nombreux ensembles de nombres — par exemple les nombres entiers relatifs, munis de la loi d'addition.
Théorie des groupesvignette|Le Rubik's cube illustre la notion de groupes de permutations. Voir groupe du Rubik's Cube. La théorie des groupes est en mathématique, plus précisément en algèbre générale, la discipline qui étudie les structures algébriques appelées groupes. Le développement de la théorie des groupes est issu de la théorie des nombres, de la théorie des équations algébriques et de la géométrie. La théorie des groupes est étroitement liée à la théorie des représentations.