Équation aux dérivées partiellesEn mathématiques, plus précisément en calcul différentiel, une équation aux dérivées partielles (parfois appelée équation différentielle partielle et abrégée en EDP) est une équation différentielle dont les solutions sont les fonctions inconnues dépendant de plusieurs variables vérifiant certaines conditions concernant leurs dérivées partielles. Une EDP a souvent de très nombreuses solutions, les conditions étant moins strictes que dans le cas d'une équation différentielle ordinaire à une seule variable ; les problèmes comportent souvent des conditions aux limites qui restreignent l'ensemble des solutions.
Méthode des éléments finisEn analyse numérique, la méthode des éléments finis (MEF, ou FEM pour finite element method en anglais) est utilisée pour résoudre numériquement des équations aux dérivées partielles. Celles-ci peuvent par exemple représenter analytiquement le comportement dynamique de certains systèmes physiques (mécaniques, thermodynamiques, acoustiques).
Espace fonctionnelEn mathématiques, un espace fonctionnel est un ensemble d'applications d'une certaine forme d'un ensemble vers un ensemble Il est appelé « espace » car, selon les cas, il peut être un espace topologique, un espace vectoriel, ou les deux. Les espaces fonctionnels apparaissent dans différents domaines des mathématiques : en théorie des ensembles, l'ensemble des parties d'un ensemble peut être identifié avec l'ensemble des fonctions de à valeurs dans , noté .
Équation de la chaleurEn mathématiques et en physique théorique, l'équation de la chaleur est une équation aux dérivées partielles parabolique, pour décrire le phénomène physique de conduction thermique, introduite initialement en 1807 par Joseph Fourier, après des expériences sur la propagation de la chaleur, suivies par la modélisation de l'évolution de la température avec des séries trigonométriques, appelés depuis séries de Fourier et transformées de Fourier, permettant une grande amélioration à la modélisation mathématique
Espace de SobolevEn analyse mathématique, les espaces de Sobolev sont des espaces fonctionnels particulièrement adaptés à la résolution des problèmes d'équation aux dérivées partielles. Ils doivent leur nom au mathématicien russe Sergueï Lvovitch Sobolev. Plus précisément, un espace de Sobolev est un espace vectoriel de fonctions muni de la norme obtenue par la combinaison de la norme L de la fonction elle-même et de ses dérivées jusqu'à un certain ordre. Les dérivées sont comprises dans un sens faible, au sens des distributions afin de rendre l'espace complet.
Carré sommableEn mathématiques, une fonction définie sur un espace mesuré Ω et à valeurs dans R ou C est dite de carré sommable ou de carré intégrable si elle appartient à l’espace L(Ω) des fonctions dont l'intégrale du carré (du module dans le cas des nombres complexes) converge sur Ω. Par exemple, une fonction mesurable de R dans C est de carré sommable lorsque l’intégrale suivante (au sens de Lebesgue) converge, c'est-à-dire si elle existe et correspond ainsi à un nombre fini.
Espace de Schwartzvignette|Une fonction gaussienne bidimensionnelle est un exemple de fonction à décroissance rapide. En analyse mathématique, l'espace de Schwartz est l'espace des fonctions déclinantes (c'est-à-dire des fonctions indéfiniment dérivables à décroissance rapide, ainsi que leurs dérivées de tous ordres). Le dual de cet espace est l'espace des distributions tempérées. Les espaces et jouent un rôle essentiel dans la théorie de la transformée de Fourier.
Espace de HardyLes espaces de Hardy, dans le domaine mathématique de l'analyse fonctionnelle, sont des espaces de fonctions analytiques sur le disque unité D du plan complexe. Soit f une fonction holomorphe sur D, on sait que f admet un développement en série de Taylor en 0 sur le disque unité : On dit alors que f est dans l'espace de Hardy H(D) si la suite appartient à l. Autrement dit, on a : On définit alors la norme de f par : La fonction appartient à H(D), par convergence de la série (série de Riemann convergente).
Espace LpEn mathématiques, un espace L est un espace vectoriel de classes des fonctions dont la puissance d'exposant p est intégrable au sens de Lebesgue, où p est un nombre réel strictement positif. Le passage à la limite de l'exposant aboutit à la construction des espaces L de fonctions bornées. Les espaces L sont appelés espaces de Lebesgue. Identifiant les fonctions qui ne diffèrent que sur un ensemble négligeable, chaque espace L est un espace de Banach lorsque l'exposant est supérieur ou égal à 1.
Géométrie différentiellevignette|Exemple d'objets étudiés en géométrie différentielle. Un triangle dans une surface de type selle de cheval (un paraboloïde hyperbolique), ainsi que deux droites parallèles. En mathématiques, la géométrie différentielle est l'application des outils du calcul différentiel à l'étude de la géométrie. Les objets d'étude de base sont les variétés différentielles, ensembles ayant une régularité suffisante pour envisager la notion de dérivation, et les fonctions définies sur ces variétés.