Stabilité de LiapounovEn mathématiques et en automatique, la notion de stabilité de Liapounov (ou, plus correctement, de stabilité au sens de Liapounov) apparaît dans l'étude des systèmes dynamiques. De manière générale, la notion de stabilité joue également un rôle en mécanique, dans les modèles économiques, les algorithmes numériques, la mécanique quantique, la physique nucléaire Un exemple typique de système stable au sens de Liapounov est celui constitué d'une bille roulant sans frottement au fond d'une coupelle ayant la forme d'une demi-sphère creuse : après avoir été écartée de sa position d'équilibre (qui est le fond de la coupelle), la bille oscille autour de cette position, sans s'éloigner davantage : la composante tangentielle de la force de gravité ramène constamment la bille vers sa position d'équilibre.
Rang (algèbre linéaire)En algèbre linéaire : le rang d'une famille de vecteurs est la dimension du sous-espace vectoriel engendré par cette famille. Par exemple, pour une famille de vecteurs linéairement indépendants, son rang est le nombre de vecteurs ; le rang d'une application linéaire de dans est la dimension de son , qui est un sous-espace vectoriel de . Le théorème du rang relie la dimension de , la dimension du noyau de et le rang de ; le rang d'une matrice est le rang de l'application linéaire qu'elle représente, ou encore le rang de la famille de ses vecteurs colonnes ; le rang d'un système d'équations linéaires est le nombre d'équations que compte tout système échelonné équivalent.
Matrice symétriquevignette|Matrice 5x5 symétrique. Les coefficients égaux sont représentés par la même couleur. En algèbre linéaire et multilinéaire, une matrice symétrique est une matrice carrée qui est égale à sa propre transposée, c'est-à-dire telle que a = a pour tous i et j compris entre 1 et n, où les a sont les coefficients de la matrice et n est son ordre. Les coefficients d'une matrice symétrique sont symétriques par rapport à la diagonale principale (du coin en haut à gauche jusqu'à celui en bas à droite).
Matrices de PauliLes matrices de Pauli, développées par Wolfgang Pauli, forment, au facteur i près, une base de l'algèbre de Lie du groupe SU(2). Elles sont définies comme l'ensemble de matrices complexes de dimensions suivantes : (où i est l’unité imaginaire des nombres complexes). Ces matrices sont utilisées en mécanique quantique pour représenter le spin des particules, notamment dès 1927 dans l'étude non-relativiste du spin de l'électron : l'équation de Pauli.
Décomposition d'une matrice en éléments propresEn algèbre linéaire, la décomposition d'une matrice en éléments propres est la factorisation de la matrice en une forme canonique où les coefficients matriciels sont obtenus à partir des valeurs propres et des vecteurs propres. Un vecteur non nul v à N lignes est un vecteur propre d'une matrice carrée A à N lignes et N colonnes si et seulement si il existe un scalaire λ tel que : où λ est appelé valeur propre associée à v. Cette dernière équation est appelée « équation aux valeurs propres ».
Factorisation de CholeskyLa factorisation de Cholesky, nommée d'après André-Louis Cholesky, consiste, pour une matrice symétrique définie positive , à déterminer une matrice triangulaire inférieure telle que : . La matrice est en quelque sorte une « racine carrée » de . Cette décomposition permet notamment de calculer la matrice inverse , de calculer le déterminant de A (égal au carré du produit des éléments diagonaux de ) ou encore de simuler une loi multinormale. Elle est aussi utilisée en chimie quantique pour accélérer les calculs (voir Décomposition de Cholesky (chimie quantique)).
Déterminant (mathématiques)vignette|L'aire du parallélogramme est la valeur absolue du déterminant de la matrice formée par les vecteurs correspondants aux côtés du parallélogramme. En mathématiques, le déterminant est une valeur qu'on peut associer aux matrices ou aux applications linéaires en dimension finie. Sur les exemples les plus simples, ceux de la géométrie euclidienne en dimension 2 ou 3, il s'interprète en termes d'aires ou de volumes, et son signe est relié à la notion d'orientation.
Équation aux dérivées partielles elliptiqueEn mathématiques, une équation aux dérivées partielles linéaire du second ordre, dont la forme générale est donnée par : est dite elliptique en un point donné x de l'ouvert U si la matrice carrée symétrique des coefficients du second ordre admet des valeurs propres non nulles et de même signe. En physique, les équations de Laplace, et de Poisson pour le potentiel électrostatique respectivement dans le vide et pour la distribution de charges sont de type elliptique.
Analyse en composantes principalesL'analyse en composantes principales (ACP ou PCA en anglais pour principal component analysis), ou, selon le domaine d'application, transformation de Karhunen–Loève (KLT) ou transformation de Hotelling, est une méthode de la famille de l'analyse des données et plus généralement de la statistique multivariée, qui consiste à transformer des variables liées entre elles (dites « corrélées » en statistique) en nouvelles variables décorrélées les unes des autres. Ces nouvelles variables sont nommées « composantes principales » ou axes principaux.
Matrice creuseDans la discipline de l'analyse numérique des mathématiques, une matrice creuse est une matrice contenant beaucoup de zéros. Conceptuellement, les matrices creuses correspondent aux systèmes qui sont peu couplés. Si on considère une ligne de balles dont chacune est reliée à ses voisines directes par des élastiques, ce système serait représenté par une matrice creuse. Au contraire, si chaque balle de la ligne est reliée à toutes les autres balles, ce système serait représenté par une matrice dense.