Chaînettevignette|redresse|Courbe de la chaînette pour a = 2, . En mathématiques, la chaînette est une courbe plane transcendante, qui correspond à la forme que prend un câble (ou une chaîne) lorsqu'il est suspendu par ses extrémités et soumis à une force gravitationnelle uniforme (son propre poids). On lui donne parfois le nom de vélaire. vignette|Caténaire, formée d'un câble porteur et d'un câble linéaire inférieur, reliés par des pendules : la chaînette virtuelle se situe entre les deux câbles.
Endomorphisme normalUn endomorphisme normal est un opérateur d'un espace de Hilbert qui commute avec son adjoint. Soient H un espace de Hilbert (réel ou complexe) et u un endomorphisme de H, d'adjoint u*. On dit que u est normal si Les endomorphismes autoadjoints sont normaux (cas u* = u). Les endomorphismes antiautoadjoints sont normaux (cas u* = –u). Les isométries vectorielles sont des endomorphismes normaux (cas u* = u).
Courbe brachistochroneLe mot brachistochrone désigne une courbe dans un plan vertical sur laquelle un point matériel pesant placé dans un champ de pesanteur uniforme, glissant sans frottement et sans vitesse initiale, présente un temps de parcours minimal parmi toutes les courbes joignant deux points fixés : on parle de problème de la courbe brachistochrone. vignette|right|upright=1.5|Comparaison des vitesses d'objets suivant différentes courbes. Le mot brachistochrone vient du grec brakhistos (« le plus court ») et s'écrit donc avec un i et non un y, et de chronos (« temps »).
Knot polynomialIn the mathematical field of knot theory, a knot polynomial is a knot invariant in the form of a polynomial whose coefficients encode some of the properties of a given knot. The first knot polynomial, the Alexander polynomial, was introduced by James Waddell Alexander II in 1923. Other knot polynomials were not found until almost 60 years later. In the 1960s, John Conway came up with a skein relation for a version of the Alexander polynomial, usually referred to as the Alexander–Conway polynomial.
Série géométriquethumb|Preuve sans mots de l'égalité1/2 + 1/4 + 1/8 + 1/16 + ⋯ = 1 thumb|Illustration de l'égalité 1/4 + 1/16 + 1/64 + 1/256 + ⋯ = 1/3 :chacun des carrés violets mesure 1/4 de la surface du grand carré le plus proche (1/2× = 1/4, 1/4×1/4 = 1/16, etc.). Par ailleurs, la somme des aires des carrés violets est égale à un tiers de la superficie du grand carré. En mathématiques, la série géométrique est l'un des exemples de série numérique les plus simples.
Cône (géométrie)vignette|Illustration à l'article Problemata mathematica... publiée sur les Acta Eruditorum, 1734 En géométrie, un cône est une surface réglée ou bien un solide. Un cône est une surface réglée définie par une droite (d), appelée génératrice, passant par un point fixe S appelé sommet et un point variable décrivant une courbe (c), appelée courbe directrice. On parle aussi dans ce cas de surface conique. Cône de révolution Parmi ces surfaces coniques, la plus étudiée est le cône de révolution dans lequel la courbe directrice est un cercle de centre O situé dans un plan perpendiculaire à (SO).
Polynôme d'AlexanderEn mathématiques, et plus précisément en théorie des nœuds, le polynôme d'Alexander est un invariant de nœuds qui associe un polynôme à coefficients entiers à chaque type de nœud. C'est le premier découvert ; il l'a été par James Waddell Alexander II, en 1923. En 1969, John Conway en montra une version, appelée à présent le polynôme d'Alexander-Conway, pouvant être calculé à l'aide d'une « » (skein relation), mais l'importance n'en fut pas comprise avant la découverte du polynôme de Jones en 1984.
Fonction de WeierstrassLa fonction de Weierstrass, aussi appelée fonction de Weierstrass-Hardy, fut en 1872 le premier exemple publié d'une fonction réelle d'une variable réelle qui est continue partout, mais dérivable nulle part. On le doit à Karl Weierstrass et Leopold Kronecker ; les hypothèses ont été améliorées par G. H. Hardy.vignette|Évolution de la courbe de la fonction de Weierstrass lors d'une augmentation linéaire de la valeur de b de 0,1 à 5, pour a fixé égal à 0,5. la non-dérivabilité démarre à b = 2.
Corde (géométrie)vignette|Diamètre, rayon, arc et corde d’un cercle. En géométrie, une corde est un segment reliant deux points d’un cercle ou d’une autre courbe. vignette Une corde d'un cercle de rayon interceptant un angle au centre de mesure est de longueur . Une corde d'un cercle est donc de longueur inférieure à celle du diamètre , avec égalité si et seulement si ses deux extrémités sont diamétralement opposées. Formule des cordes consécutives : Soient trois points d'un cercle de diamètre , et étant situés de part et d'autre du diamètre issu de .
Principe de cohérence de NovikovLe principe de cohérence de Novikov est un principe développé par le professeur Igor Novikov au milieu des années 1980 pour résoudre le problème des paradoxes liés au voyage dans le temps. vignette|redresse|Une boule de billard qui entre en collision avec elle-même après voyage temporel est déviée de sa trajectoire. Le principe de Novikov affirme que la probabilité d'existence d'un événement pouvant provoquer un paradoxe est nulle.