Réduction de JordanLa réduction de Jordan est la traduction matricielle de la réduction des endomorphismes introduite par Camille Jordan. Cette réduction est tellement employée, en particulier en analyse pour la résolution d'équations différentielles ou pour déterminer le terme général de certaines suites récurrentes, qu'on la nomme parfois « jordanisation des endomorphismes ». Elle consiste à exprimer la matrice d'un endomorphisme dans une base, dite base de Jordan, où l'expression de l'endomorphisme est réduite.
Corps finiEn mathématiques et plus précisément en algèbre, un corps fini est un corps commutatif qui est par ailleurs fini. À isomorphisme près, un corps fini est entièrement déterminé par son cardinal, qui est toujours une puissance d'un nombre premier, ce nombre premier étant sa caractéristique. Pour tout nombre premier p et tout entier non nul n, il existe un corps de cardinal pn, qui se présente comme l'unique extension de degré n du corps premier Z/pZ.
Base de GröbnerEn mathématiques, une base de Gröbner (ou base standard, ou base de Buchberger) d'un idéal I de l'anneau de polynômes K[X, ..., X] est un ensemble de générateurs de cet idéal, vérifiant certaines propriétés supplémentaires. Cette notion a été introduite dans les années 1960, indépendamment par Heisuke Hironaka et Bruno Buchberger, qui lui a donné le nom de son directeur de thèse Wolfgang Gröbner. Les bases de Gröbner ont le grand avantage de ramener l'étude des idéaux polynomiaux à l'étude des idéaux monomiaux (c'est-à-dire formés de monômes), plus faciles à appréhender.
Entier quadratiqueEn mathématiques, un entier quadratique est un nombre complexe, racine d'un polynôme unitaire du second degré à coefficients entiers. La notion de nombre algébrique de degré inférieur ou égal à 2 est plus générale : elle correspond à un nombre complexe, racine d'un polynôme du second degré à coefficients seulement rationnels. Ces nombres particuliers disposent de propriétés algébriques.
Période de GaussEn mathématiques et plus précisément en arithmétique modulaire, une période de Gauss est une certaine sorte de somme de racines de l'unité. Les périodes de Gauss permettent des calculs explicites dans les corps cyclotomiques, en relation avec la théorie de Galois et l'analyse harmonique sur un groupe abélien fini. Elles sont à la base de la théorie classique appelée cyclotomie. Elles furent introduites par le mathématicien allemand Carl Friedrich Gauss et furent à la base de sa théorie de constructions à la règle et au compas.
Outilthumb|Une boîte à outils en bois des années 1950. Un outil est un objet physique utilisé par un être vivant directement, ou par l'intermédiaire d'une machine, afin d'exercer une action le plus souvent mécanique, ou thermique, sur un élément d'environnement à traiter (matière brute, objet fini ou semi-fini, être vivant, etc). Il améliore l'efficacité des actions entreprises ou donne accès à des actions impossibles autrement. Beaucoup procurent un avantage mécanique en fonctionnant selon le principe d'une machine simple, comme la pince-monseigneur, qui exploite le principe du levier.
Nombre premiervignette|Nombres naturels de zéro à cent. Les nombres premiers sont marqués en rouge. vignette|Le nombre 7 est premier car il admet exactement deux diviseurs positifs distincts. Un nombre premier est un entier naturel qui admet exactement deux diviseurs distincts entiers et positifs. Ces deux diviseurs sont 1 et le nombre considéré, puisque tout nombre a pour diviseurs 1 et lui-même (comme le montre l’égalité n = 1 × n), les nombres premiers étant ceux qui ne possèdent pas d'autre diviseur.
Matrice normaleEn algèbre linéaire, une matrice carrée A à coefficients complexes est une matrice normale si elle commute avec sa matrice adjointe A*, c'est-à-dire si A⋅A* = A*⋅A. Toutes les matrices hermitiennes, ou unitaires sont normales, en particulier, parmi les matrices à coefficients réels, toutes les matrices symétriques, antisymétriques ou orthogonales. Ce théorème — cas particulier du théorème de décomposition de Schur — est connu sous le nom de théorème spectral, et les éléments diagonaux de UAU sont alors les valeurs propres de A.
Entier sans facteur carrévignette|Les nombres qui n'ont pas été rayé sont tous les entiers sans facteur carré jusqu'à 120 En mathématiques et plus précisément en arithmétique, un entier sans facteur carré (souvent appelé, par tradition ou commodité quadratfrei ou squarefree) est un entier relatif qui n'est divisible par aucun carré parfait, excepté 1. Par exemple, 10 est sans facteur carré mais 18 ne l'est pas, puisqu'il est divisible par 9 = 3. Les dix plus petits nombres de la des entiers positifs sans facteur carré sont 1, 2, 3, 5, 6, 7, 10, 11, 13, 14.
Nombres premiers jumeauxEn mathématiques, deux nombres premiers jumeaux sont deux nombres premiers qui ne diffèrent que de 2. Hormis pour le couple (2, 3), cet écart entre nombres premiers de 2 est le plus petit possible. Les plus petits nombres premiers jumeaux sont 3 et 5, 5 et 7, 11 et 13. En , les plus grands nombres premiers jumeaux connus, découverts en 2016 dans le cadre du projet de calcul distribué PrimeGrid, sont × 2 ± 1 ; ils possèdent chiffres en écriture décimale.