A right triangle (American English) or right-angled triangle (British), or more formally an orthogonal triangle, formerly called a rectangled triangle (ὀρθόσγωνία), is a triangle in which one angle is a right angle (that is, a 90-degree angle), i.e., in which two sides are perpendicular. The relation between the sides and other angles of the right triangle is the basis for trigonometry.
The side opposite to the right angle is called the hypotenuse (side c in the figure). The sides adjacent to the right angle are called legs (or catheti, singular: cathetus). Side a may be identified as the side adjacent to angle B and opposed to (or opposite) angle A, while side b is the side adjacent to angle A and opposed to angle B.
If the lengths of all three sides of a right triangle are integers, the triangle is said to be a Pythagorean triangle and its side lengths are collectively known as a Pythagorean triple.
Pythagorean theorem
The three sides of a right triangle are related by the Pythagorean theorem, which in modern algebraic notation can be written
where c is the length of the hypotenuse (side opposite the right angle), and a and b are the lengths of the legs (remaining two sides). Pythagorean triples are integer values of a, b, c satisfying this equation. This theorem was proven in antiquity, and is proposition I.47 in Euclid's Elements: "In right-angled triangles the square on the side subtending the right angle is equal to the squares on the sides containing the right angle."
As with any triangle, the area is equal to one half the base multiplied by the corresponding height. In a right triangle, if one leg is taken as the base then the other is height, so the area of a right triangle is one half the product of the two legs. As a formula the area T is
where a and b are the legs of the triangle.
If the incircle is tangent to the hypotenuse AB at point P, then denoting the semi-perimeter (a + b + c) / 2 as s, we have PA = s − a and PB = s − b, and the area is given by
This formula only applies to right triangles.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours donne les connaissances fondamentales liées aux fonctions trigonométriques, logarithmiques et exponentielles. La présentation des concepts et des propositions est soutenue par une grande gamm
Ce cours donne les connaissances fondamentales liées aux fonctions trigonométriques, logarithmiques et exponentielles. La présentation des concepts et des propositions est soutenue par une grande gamm
Ce cours entend exposer les fondements de la géométrie à un triple titre :
1/ de technique mathématique essentielle au processus de conception du projet,
2/ d'objet privilégié des logiciels de concept
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides. The theorem can be written as an equation relating the lengths of the sides a, b and the hypotenuse c, sometimes called the Pythagorean equation: The theorem is named for the Greek philosopher Pythagoras, born around 570 BC.
In geometry, an altitude of a triangle is a line segment through a vertex and perpendicular to a line containing the the side opposite the vertex. This line containing the opposite side is called the extended base of the altitude. The intersection of the extended base and the altitude is called the foot of the altitude. The length of the altitude, often simply called "the altitude", is the distance between the extended base and the vertex. The process of drawing the altitude from the vertex to the foot is known as dropping the altitude at that vertex.
In elementary geometry, two geometric objects are perpendicular if their intersection forms right angles (angles that are 90 degrees or π/2 radians wide) at the point of intersection called a foot. The condition of perpendicularity may be represented graphically using the perpendicular symbol, ⟂. Perpendicular intersections can happen between two lines (or two line segments), between a line and a plane, and between two planes.
Covers the concepts of local homeomorphisms and coverings in manifolds, emphasizing the conditions under which a map is considered a local homeomorphism or a covering.
In this note, we study certain sufficient conditions for a set of minimal klt pairs ( X, triangle) with kappa ( X, triangle) = dim( X ) - 1 to be bounded. ...
This PhD thesis explores the way multiple and tenuous links connect collective memory and space in the contemporary city. It does so through a field enquiry carried out in Rome, Italy. This palimpsest-city has a particular relationship to the past, which c ...
We use spherical cap harmonic (SCH) basis functions to analyse and reconstruct the morphology of scanned genus-0 rough surface patches with open edges. We first develop a novel one-to-one conformal mapping algorithm with minimal area distortion for paramet ...