Startup

Spirochrome

Description

Spirochrome specializes in providing innovative and disruptive probes for live cell fluorescence microscopy. Their technology is based on bright and photostable silicon rhodamine (SiR) and SPY fluorophores, which are cell permeable, fluorogenic, and compatible with super-resolution microscopy. These probes cover the whole visible spectrum and are designed to label cellular structures such as DNA, actin, microtubules, and lysosomes. Spirochrome's probes are known for their high performance and quality, enabling researchers to conduct fluorescence imaging of biological structures in living cells with simplicity and reliability.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Categories (12)
Histology
Histology, also known as microscopic anatomy or microanatomy, is the branch of biology that studies the microscopic anatomy of biological tissues. Histology is the microscopic counterpart to gross anatomy, which looks at larger structures visible without a microscope. Although one may divide microscopic anatomy into organology, the study of organs, histology, the study of tissues, and cytology, the study of cells, modern usage places all of these topics under the field of histology.
Fluorescence imaging
Fluorescence imaging is a type of non-invasive imaging technique that can help visualize biological processes taking place in a living organism. Images can be produced from a variety of methods including: microscopy, imaging probes, and spectroscopy. Fluorescence itself, is a form of luminescence that results from matter emitting light of a certain wavelength after absorbing electromagnetic radiation. Molecules that re-emit light upon absorption of light are called fluorophores.
Spectroscopy
Spectroscopy is the field of study that measures and interprets the electromagnetic spectra that result from the interaction between electromagnetic radiation and matter as a function of the wavelength or frequency of the radiation. Matter waves and acoustic waves can also be considered forms of radiative energy, and recently gravitational waves have been associated with a spectral signature in the context of the Laser Interferometer Gravitational-Wave Observatory (LIGO).
Membrane biology
A biological membrane, biomembrane or cell membrane is a selectively permeable membrane that separates the interior of a cell from the external environment or creates intracellular compartments by serving as a boundary between one part of the cell and another. Biological membranes, in the form of eukaryotic cell membranes, consist of a phospholipid bilayer with embedded, integral and peripheral proteins used in communication and transportation of chemicals and ions.
Organism
An organism () is any biological living system that functions as an individual life form. All organisms are composed of cells (cell theory). The idea of organism is based on the concept of minimal functional unit of life. Three traits have been proposed to play the main role in qualification as an organism: noncompartmentability – structure that cannot be divided without its functionality loss, individuality – the entity has simultaneous holding of genetic uniqueness, genetic homogeneity and autonomy, distinctness – genetic information has to maintain open-system (a cell).
Show more
Related concepts (23)
Super-resolution microscopy
Super-resolution microscopy is a series of techniques in optical microscopy that allow such images to have resolutions higher than those imposed by the diffraction limit, which is due to the diffraction of light. Super-resolution imaging techniques rely on the near-field (photon-tunneling microscopy as well as those that use the Pendry Superlens and near field scanning optical microscopy) or on the far-field.
Confocal microscopy
Confocal microscopy, most frequently confocal laser scanning microscopy (CLSM) or laser scanning confocal microscopy (LSCM), is an optical imaging technique for increasing optical resolution and contrast of a micrograph by means of using a spatial pinhole to block out-of-focus light in image formation. Capturing multiple two-dimensional images at different depths in a sample enables the reconstruction of three-dimensional structures (a process known as optical sectioning) within an object.
Cell (biology)
The cell is the basic structural and functional unit of all forms of life. Every cell consists of cytoplasm enclosed within a membrane, and contains many macromolecules such as proteins, DNA and RNA, as well as many small molecules of nutrients and metabolites. The term comes from the Latin word cellula meaning 'small room'. Cells can acquire specified function and carry out various tasks within the cell such as replication, DNA repair, protein synthesis, and motility. Cells are capable of specialization and mobility within the cell.
Microscopy
Microscopy is the technical field of using microscopes to view objects and areas of objects that cannot be seen with the naked eye (objects that are not within the resolution range of the normal eye). There are three well-known branches of microscopy: optical, electron, and scanning probe microscopy, along with the emerging field of X-ray microscopy. Optical microscopy and electron microscopy involve the diffraction, reflection, or refraction of electromagnetic radiation/electron beams interacting with the specimen, and the collection of the scattered radiation or another signal in order to create an image.
Fluorescence
Fluorescence is the emission of light by a substance that has absorbed light or other electromagnetic radiation. It is a form of luminescence. In most cases, the emitted light has a longer wavelength, and therefore a lower photon energy, than the absorbed radiation. A perceptible example of fluorescence occurs when the absorbed radiation is in the ultraviolet region of the electromagnetic spectrum (invisible to the human eye), while the emitted light is in the visible region; this gives the fluorescent substance a distinct color that can only be seen when the substance has been exposed to UV light.
Show more
Related courses (63)
BIO-659: Advanced Microscopy for Life Science
For further information, please get in contact with the instructor or have a look on the following web-site: http://biop.epfl.ch/
BIO-221: Cell and developmental biology for engineers
Students will learn essentials of cell and developmental biology with an engineering mind set, with an emphasis on animal systems and quantitative approaches.
CH-413: Nanobiotechnology
This course concerns modern bioanalytical techniques to investigate biomolecules both in vitro and in vivo, including recent methods to image, track and manipulate single molecules. We cover the basic
Show more
Related lectures (290)
Fluorescence in Microscopy: Introduction & Labeling Techniques
Covers the introduction to fluorescence in microscopy, labeling techniques, specificity of markers, multi-color imaging, and factors affecting fluorescence properties.
Microscopy Image Analysis
Explores light microscopy principles, fluorescent proteins, optical slicing, and modulation transfer functions in cellular imaging.
Fluorescence: Proteins & Applications
Explores the discovery and applications of fluorescent proteins, with a focus on the revolutionary green fluorescent protein (GFP).
Fluorescence in Microscopy: Important Concepts
Introduces fundamental concepts of fluorescence in microscopy, covering terms like excitation and emission spectra, Stokes shift, quantum efficiency, brightness, and photobleaching.
Plasmonic Biomarkers
Explores the use of plasmonic nanoparticles as robust biomarkers in sensing and microscopy applications.
Show more
Related MOOCs (19)
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Microstructure Fabrication Technologies I
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Show more
Related publications (978)

Subsurface fluorescence time-of-flight imaging using a large-format single-photon avalanche diode sensor for tumor depth assessment

Edoardo Charbon, Claudio Bruschini, Arin Can Ülkü, Yichen Feng

Significance: Fluorescence guidance is used clinically by surgeons to visualize anatomical and/or physiological phenomena in the surgical field that are difficult or impossible to detect by the naked eye. Such phenomena include tissue perfusion or molecula ...
Spie-Soc Photo-Optical Instrumentation Engineers2024

Compact and effective photon-resolved image scanning microscope

Giorgio Tortarolo

Fluorescence confocal laser-scanning microscopy (LSM) is one of the most popular tools for life science research. This popularity is expected to grow thanks to single-photon array detectors tailored for LSM. These detectors offer unique single-photon spati ...
Spie-Soc Photo-Optical Instrumentation Engineers2024

Advancements in Nanomechanical Characterization and Biomolecular Imaging with Atomic force Microscopy

Veronika Cencen

Atomic force microscopy (AFM) is a widely used imaging tool for obtaining a variety of information for a range of samples. Although it was initially intended to serve as a method of observing very flat solid surfaces, its use expanded into several other fi ...
EPFL2024
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.