Processus de Poissonvignette|Schéma expliquant le processus de Poisson Un processus de Poisson, nommé d'après le mathématicien français Siméon Denis Poisson et la loi du même nom, est un processus de comptage classique dont l'équivalent discret est la somme d'un processus de Bernoulli. C'est le plus simple et le plus utilisé des processus modélisant une . C'est un processus de Markov, et même le plus simple des processus de naissance et de mort (ici un processus de naissance pur).
Théorie des files d'attentevignette|Ici Agner Krarup Erlang, ingénieur et mathématicien Danois ayant travaillé sur la théorie des files d'attente. La théorie des files d'attente est une théorie mathématique relevant du domaine des probabilités, qui étudie les solutions optimales de gestion des , ou queues. Une queue est nécessaire et se créera d'elle-même si ce n'est pas anticipé, dans tous les cas où l'offre est inférieure à la demande, même temporairement.
Loi de PoissonEn théorie des probabilités et en statistiques, la loi de Poisson est une loi de probabilité discrète qui décrit le comportement du nombre d'événements se produisant dans un intervalle de temps fixé, si ces événements se produisent avec une fréquence moyenne ou espérance connue, et indépendamment du temps écoulé depuis l'événement précédent. gauche|vignette|Chewing gums sur un trottoir. Le nombre de chewing gums sur un pavé est approximativement distribué selon une loi de Poisson.
Mesure aléatoireEn théorie des probabilités, une mesure aléatoire est une détermination de mesure d'un élément aléatoire. Soit X un espace métrique séparable complet et la tribu de son ensemble de Borel. Une mesure de Borel μ sur X est finie si μ (A) < ∞ pour chaque ensemble A borélien limité. Soit l'espace de toutes les mesures finies sur . Soit un espace probabilisé. Alors, une mesure aléatoire des cartes de cet espace de probabilité à l'espace mesurable .
Processus de Poisson composéUn processus de Poisson composé, nommé d'après le mathématicien français Siméon Denis Poisson, est un processus stochastique en temps continu à droite limité à gauche (Càdlàg). C'est en particulier un processus de Lévy. Un processus de Poisson composé est un processus aléatoire indexé par le temps qui s’écrit où est un processus de Poisson et est une suite de variables aléatoires indépendantes et identiquement distribuées et indépendantes de . Comme tout processus de Lévy, le processus de Poisson composé est à accroissements indépendants et à accroissements stationnaires.
Balance equationIn probability theory, a balance equation is an equation that describes the probability flux associated with a Markov chain in and out of states or set of states. The global balance equations (also known as full balance equations) are a set of equations that characterize the equilibrium distribution (or any stationary distribution) of a Markov chain, when such a distribution exists. For a continuous time Markov chain with state space , transition rate from state to given by and equilibrium distribution given by , the global balance equations are given by or equivalently for all .
Processus de naissance et de mortLes processus de naissance et de mort sont des cas particuliers de processus de Markov en temps continu où les transitions d'état sont de deux types seulement : les «naissances» où l'état passe de n à n+1 et les morts où l'état passe de n à n-1. Ces processus ont de nombreuses applications en dynamique des populations et dans la . Le processus est spécifié par les taux de naissance et les taux de mortalité . On suppose que .
M/G/1 queueIn queueing theory, a discipline within the mathematical theory of probability, an M/G/1 queue is a queue model where arrivals are Markovian (modulated by a Poisson process), service times have a General distribution and there is a single server. The model name is written in Kendall's notation, and is an extension of the M/M/1 queue, where service times must be exponentially distributed. The classic application of the M/G/1 queue is to model performance of a fixed head hard disk.
Simulation à événements discretsLa simulation à évènements discrets est une technique utilisée dans le cadre de l’étude de la dynamique des systèmes. Elle consiste en une modélisation informatique où le changement de l'état d'un système, au cours du temps, est une suite d'évènements discrets. Chaque évènement arrive à un instant donné et modifie l'état du système. De nos jours, cette technique est couramment utilisée tant par les industries et les entreprises de services afin de concevoir, optimiser et valider leurs organisations que par les centres de recherche dans l’optique d’étudier les systèmes complexes non linéaires.
Perte de mémoire (probabilités)En probabilités et statistique, la perte de mémoire est une propriété de certaines lois de probabilité : la loi exponentielle et la loi géométrique. On dit que ce sont des lois sans mémoire. Cette propriété est le plus souvent exprimée en termes de . Supposons qu'une variable aléatoire soit définie comme le temps passé dans un magasin de l'heure d'ouverture (disons neuf heures du matin) à l'arrivée du premier client. On peut donc voir comme le temps qu'un serveur attend avant l'arrivée du premier client.