CarréEn géométrie euclidienne, un carré est un quadrilatère convexe à quatre côtés de même longueur avec quatre angles droits. C’est donc un polygone régulier, qui est à la fois un losange, un rectangle, et par conséquent aussi un parallélogramme particulier. Dans le plan, un carré est invariant par quatre symétries axiales, par deux rotations d’angle droit et par une symétrie centrale par rapport à l’intersection de ses diagonales. Les premières représentations du carré datent de la préhistoire.
Automorphisme intérieurUn automorphisme intérieur est une notion mathématique utilisée en théorie des groupes. Soient G un groupe et g un élément de G. On appelle automorphisme intérieur associé à g, noté ιg, l'automorphisme de G défini par : Pour un groupe abélien, les automorphismes intérieurs sont triviaux. Plus généralement, l'ensemble des automorphismes intérieurs de G forme un sous-groupe normal du groupe des automorphismes de G, et ce sous-groupe est isomorphe au groupe quotient de G par son centre.
Indice d'un sous-groupeEn mathématiques, et plus précisément en théorie des groupes, si H est un sous-groupe d'un groupe G, l'indice du sous-groupe H dans G est le nombre de copies distinctes de H que l'on obtient en multipliant à gauche par un élément de G, soit le nombre des xH quand x parcourt G (on peut choisir en fait indifféremment de multiplier à gauche ou à droite). Les classes xH formant une partition, et la multiplication à gauche dans un groupe par un élément donné étant bijective, le produit de l'indice du sous-groupe H dans G par l'ordre de H égale l'ordre de G, ce dont on déduit, pour un groupe fini, le théorème de Lagrange.
Centre d'un groupeEn théorie des groupes, on appelle centre d'un groupe G l'ensemble des éléments de G qui commutent avec tous les autres. Soit G un groupe, noté multiplicativement. Son centre Z est Dans G, Z est un sous-groupe normal — comme noyau du morphisme de groupes ι ci-dessous — et même un sous-groupe caractéristique. Tout sous-groupe de Z est sous-groupe normal de G. Z est abélien. Le centre d'un groupe abélien G est le groupe G entier, c'est-à-dire : Z = G. Le centre du groupe alterné A est trivial pour n ≥ 4.
Sous-groupe caractéristiqueDans un groupe G, un sous-groupe H est dit caractéristique lorsqu'il est stable par tout automorphisme de G : strictement caractéristique lorsqu'il est même stable par tout endomorphisme surjectif de G ; pleinement caractéristique, ou encore pleinement invariant, lorsqu'il est même stable par tout endomorphisme de G : Un sous-groupe H de G est sous-groupe caractéristique de G si et seulement si Un sous-groupe caractéristique de G est en particulier stable par tout automorphisme intérieur de G : c'est donc un
Théorie des représentationsLa théorie des représentations est une branche des mathématiques qui étudie les structures algébriques abstraites en représentant leurs éléments comme des transformations linéaires d'espaces vectoriels, et qui étudie les modules sur ces structures algébriques abstraites. Essentiellement, une représentation concrétise un objet algébrique abstrait en décrivant ses éléments par des matrices et les opérations sur ces éléments en termes d'addition matricielle et de produit matriciel.
Dihedral group of order 6In mathematics, D3 (sometimes alternatively denoted by D6) is the dihedral group of degree 3 and order 6. It equals the symmetric group S3. It is also the smallest non-abelian group. This page illustrates many group concepts using this group as example. The dihedral group D3 is the symmetry group of an equilateral triangle, that is, it is the set of all transformations such as reflection, rotation, and combinations of these, that leave the shape and position of this triangle fixed.
Graphe de CayleyEn mathématiques, un graphe de Cayley (du nom d'Arthur Cayley) est un graphe qui encode la structure d'un groupe. C'est un outil important pour l'étude de la combinatoire et de la géométrie des groupes. Étant donné un groupe et une partie génératrice de ce groupe, le graphe de Cayley Cay(G,S) est construit comme suit : À chaque élément de , on associe un sommet . À chaque élément de , on associe une couleur . Pour tout et , on trace une arête orientée de couleur du sommet vers le sommet .
Isométrie affineUne isométrie affine est une transformation bijective d'un espace affine euclidien dans un autre qui est à la fois une application affine et une isométrie (c'est-à-dire une bijection conservant les distances). Si cette isométrie conserve aussi l'orientation, on dit que c'est un déplacement. Si elle inverse l'orientation, il s'agit d'un antidéplacement. Les déplacements sont les composés de translations et rotations. Les réflexions sont des antidéplacements. On désigne par le plan (, plus précisément, un plan affine réel euclidien).
Triangle équilatéralEn géométrie euclidienne, un triangle équilatéral est un triangle dont les trois côtés ont la même longueur. Ses trois angles internes ont alors la même mesure de 60 degrés, et il constitue ainsi un polygone régulier à trois sommets. Tous les triangles équilatéraux sont semblables. Chaque triangle équilatéral est invariant par trois symétries axiales et deux rotations dont le centre est à la fois le centre de gravité, l'orthocentre et le centre des cercles inscrit et circonscrit au triangle.