NablaNabla, noté ou selon les conventions utilisées, est un symbole mathématique pouvant aussi bien désigner le gradient d'une fonction en analyse vectorielle qu'une connexion de Koszul en géométrie différentielle. Les deux notions sont reliées, ce qui explique l'utilisation d'un même symbole. En physique, il est utilisé en dimension 3 pour représenter aisément plusieurs opérateurs vectoriels, couramment utilisés en électromagnétisme et en dynamique des fluides.
Analyse vectorielleL'analyse vectorielle est une branche des mathématiques qui étudie les champs de scalaires et de vecteurs suffisamment réguliers des espaces euclidiens, c'est-à-dire les applications différentiables d'un ouvert d'un espace euclidien à valeurs respectivement dans et dans . Du point de vue du mathématicien, l'analyse vectorielle est donc une branche de la géométrie différentielle. Cette dernière inclut l'analyse tensorielle qui apporte des outils plus puissants et une analyse plus concise entre autres des champs de vecteurs.
Matrice jacobienneEn analyse vectorielle, la matrice jacobienne est la matrice des dérivées partielles du premier ordre d'une fonction vectorielle en un point donné. Son nom vient du mathématicien Charles Jacobi. Le déterminant de cette matrice, appelé jacobien, joue un rôle important pour l'intégration par changement de variable et dans la résolution de problèmes non linéaires. Soit F une fonction d'un ouvert de R à valeurs dans R. Une telle fonction est définie par ses m fonctions composantes à valeurs réelles : .
Dérivée extérieureEn mathématiques, la dérivée extérieure, opérateur de la topologie différentielle et de la géométrie différentielle, étend le concept de la différentielle d'une fonction aux formes différentielles de degré quelconque. Elle permet de définir les formes différentielles fermées et exactes. Elle est importante dans la théorie de l'intégration sur les variétés, et elle est la différentielle employée pour définir la cohomologie de De Rham et celle d'Alexander-Spanier. Sa forme actuelle fut inventée par Élie Cartan.
Coordonnées sphériquesvignette|Illustration de la convention de l'article. La position du point P est définie par la distance et par les angles (colatitude) et (longitude).|alt= On appelle coordonnées sphériques divers systèmes de coordonnées orthogonales de l'espace analogues aux coordonnées polaires du plan. Un point de l'espace est repéré dans ces systèmes par la distance à une origine (le pôle) et par deux angles. Ils sont d'emploi courant pour le repérage géographique : l'altitude, la latitude et la longitude sont une variante de ces coordonnées.
Normale (géométrie)En mathématiques, et plus précisément en géométrie, la droite normale à une courbe ou à une surface en un point est une droite perpendiculaire à la tangente ou au plan tangent en ce point. Tout vecteur directeur de cette droite est appelé vecteur normal à la courbe ou à la surface en ce point. Une convention fréquente pour les surfaces fermées est de particulariser un vecteur normal unitaire, vecteur de norme 1 et orienté vers l'extérieur.
Champ scalaireUn champ scalaire est une fonction de plusieurs variables qui associe un seul nombre (ou scalaire) à chaque point de l'espace. Les champs scalaires sont utilisés en physique pour représenter les variations spatiales de grandeurs scalaires. Un champ scalaire est une forme ou où x est un vecteur de Rn. Le champ scalaire peut être visualisé comme un espace à n dimensions avec un nombre complexe ou réel attaché à chaque point de l'espace. La dérivée d'un champ scalaire résulte en un champ vectoriel appelé le gradient.
Dérivée directionnelleEn analyse mathématique, la notion de dérivée directionnelle permet de quantifier la variation locale d'une fonction dépendant de plusieurs variables, en un point donné et le long d'une direction donnée dans l'espace de ces variables. Dans la version la plus simple, la dérivée directionnelle généralise la notion de dérivées partielles, dans le sens où l'on retrouve ces dernières en prenant comme directions de dérivation les axes de coordonnées. Le concept de dérivée directionnelle est fondamental en analyse.
Fonction à valeurs vectoriellesEn mathématiques, une fonction à valeurs vectorielles ou fonction vectorielle est une fonction dont l'espace d'arrivée est un ensemble de vecteurs, son ensemble de définition pouvant être un ensemble de scalaires ou de vecteurs. Courbe paramétrée Un exemple classique de fonctions vectorielles est celui des courbes paramétrées, c'est-à-dire des fonctions d'une variable réelle (représentant par exemple le temps dans les applications en mécanique du point) à valeurs dans un espace euclidien, par exemple le plan usuel (on parle alors de courbes planes) ou l'espace usuel (on parle alors de courbes gauches).
Théorème de dérivation des fonctions composéesEn mathématiques, dans le domaine de l'analyse, le théorème de dérivation des fonctions composées (parfois appelé règle de dérivation en chaîne ou règle de la chaîne, selon l'appellation anglaise) est une formule explicitant la dérivée d'une fonction composée pour deux fonctions dérivables. Elle permet de connaître la j-ème dérivée partielle de la i-ème application partielle de la composée de deux fonctions de plusieurs variables chacune.