Variété (géométrie)En mathématiques, et plus particulièrement en géométrie, la notion de variété peut être appréhendée intuitivement comme la généralisation de la classification qui établit qu'une courbe est une variété de dimension 1 et une surface est une variété de dimension 2. Une variété de dimension n, où n désigne un entier naturel, est un espace topologique localement euclidien, c'est-à-dire dans lequel tout point appartient à une région qui s'apparente à un tel espace.
Groupe général linéaireEn mathématiques, le groupe général linéaire — ou groupe linéaire — de degré n d’un corps commutatif K (ou plus généralement d'un anneau commutatif unifère) est le groupe des matrices inversibles de taille n à coefficients dans K, muni du produit matriciel. On le note GL(K) ou GL(n, K) et il représente les automorphismes de l’espace vectoriel K. Ce groupe est non abélien dès lors que n > 1. Lorsque K est un corps commutatif, l’ensemble GL(n, K) est en outre un ouvert pour la topologie de Zariski.
Groupe topologiqueEn mathématiques, un groupe topologique est un groupe muni d'une topologie compatible avec la structure de groupe, c'est-à-dire telle que la loi de composition interne du groupe et le passage à l'inverse sont deux applications continues. L'étude des groupes topologiques mêle donc des raisonnements d'algèbre et de topologie. La structure de groupe topologique est une notion essentielle en topologie algébrique. Les deux axiomes de la définition peuvent être remplacés par un seul : Un morphisme de groupes topologiques est un morphisme de groupes continu.
Groupe symétriqueEn mathématiques, plus particulièrement en algèbre, le groupe symétrique d'un ensemble E est le groupe des permutations de E, c'est-à-dire des bijections de E sur lui-même. N'est traité dans le présent article, à la suite de la définition générale, que le cas E fini. Soit E un ensemble. On appelle groupe symétrique de E l'ensemble des applications bijectives de E sur E muni de la composition d'applications (la loi ∘). On le note S(E) ou (ce caractère est un S gothique). Un cas particulier courant est le cas où E est l'ensemble fini {1, 2, .
Endomorphismevignette|Projection orthogonale sur une droite. Ceci est un exemple d'endomorphisme qui n'est pas un automorphisme. En mathématiques, un endomorphisme est un morphisme (ou homomorphisme) d'un objet mathématique dans lui-même. Ainsi, par exemple, un endomorphisme d'espace vectoriel E est une application linéaire f : E → E, et un endomorphisme de groupe G est un morphisme de groupes f : G → G, etc. En général, nous pouvons parler d'endomorphisme de n'importe quelle catégorie.
FoncteurDans la théorie des catégories, un foncteur est une construction transformant les objets et morphismes d'une catégorie en ceux d'une autre catégorie, d'une façon compatible. On parle alors d'une construction fonctorielle ou de fonctorialité. Une telle construction est donc un morphisme entre deux catégories. Historiquement, les foncteurs furent introduits en topologie algébrique, associant aux espaces topologiques et aux applications continues des objets algébriques tels que les groupes d'homotopie et les morphismes de groupes, permettant ainsi un véritable calcul d'invariants caractérisant ces espaces.
Théorème de CayleyEn théorie des groupes, le théorème de Cayley est un résultat élémentaire établissant que tout groupe se réalise comme groupe de permutations, c'est-à-dire comme sous-groupe d'un groupe symétrique : Si G est d'ordre n, le groupe S dans lequel il est plongé est d'ordre n!. Le théorème se reformule en disant que tout groupe agit fidèlement sur lui-même. L'action que l'on construit est en fait même simplement transitive. Ce théorème est utilisé en théorie des représentations de groupes.
Permutation circulaireEn mathématiques, une permutation circulaire ou cycle est un cas particulier de permutation. Une permutation circulaire agit comme un décalage circulaire pour un certain nombre d'éléments, et laisse tous les autres inchangés. Les permutations circulaires permettent d'illustrer le fonctionnement général des permutations, puisqu'une permutation quelconque se décompose en un produit de cycles fonctionnant de manière indépendante. Soit un entier k ≥ 2. Une permutation est un k-cycle, ou permutation circulaire de longueur k, s'il existe des éléments a1, .
Group objectIn , a branch of mathematics, group objects are certain generalizations of groups that are built on more complicated structures than sets. A typical example of a group object is a topological group, a group whose underlying set is a topological space such that the group operations are continuous. Formally, we start with a C with finite products (i.e. C has a terminal object 1 and any two of C have a ).
ÉquivarianceEn mathématiques, léquivariance est une forme de symétrie de fonctions d'un espace par symétrie avec un autre (tels que les espaces symétriques). Une application est dite équivariante par l'action d'un groupe de symétrie si ce groupe peut agir sur ses ensembles de départ et d'arrivée et quand cette application commute avec l'action de groupe. Autrement dit, appliquer une transformation du groupe de symétrie puis effectuer l'application produit le même résultat que d'effectuer ces opérations en sens inverse.