Gerhard GentzenGerhard Gentzen ( à Greifswald - à Prague) est un mathématicien et logicien allemand, dont l'œuvre est fondamentale en théorie de la démonstration. Il fut l’un des étudiants de Weyl à l'université de Göttingen de 1929 à 1933. Il est mort dans un camp de prisonniers de guerre en 1945, après avoir été arrêté par les soviets à cause de ses loyautés nazies. Gentzen est un élève de Paul Bernays à l'université de Göttingen. Mais ce dernier ayant été renvoyé comme « non- aryen » en , Hermann Weyl devient formellement son directeur de thèse.
Problème de la décisionEn logique mathématique, on appelle problème de la décision ou, sous son nom d'origine en allemand, Entscheidungsproblem, le fait de déterminer de façon mécanique (par un algorithme) si un énoncé est un théorème de la logique égalitaire du premier ordre, c’est-à-dire s'il se dérive dans un système de déduction sans autres axiomes que ceux de l'égalité (exemples : système à la Hilbert, calcul des séquents, déduction naturelle).
Dixième problème de HilbertLe dixième problème de Hilbert fait partie de la liste des 23 problèmes posés par David Hilbert en 1900 à Paris, lors de sa conférence au congrès international des mathématiciens. Il énonce : énoncé| X. — De la possibilité de résoudre une équation diophantienne. On donne une équation diophantienne à un nombre quelconque d'inconnues et à coefficients entiers rationnels : On demande de trouver une méthode par laquelle, au moyen d'un nombre fini d'opérations, on pourra distinguer si l'équation est résoluble en nombres entiers rationnels.
IntuitionnismeL'intuitionnisme est une philosophie des mathématiques que L. E. J. Brouwer a élaborée au début du . Pour Brouwer, les mathématiques sont une libre création de l'esprit humain et tous les objets qu'elles manipulent doivent être accessibles à l'intuition. L'intuitionnisme a pour conséquence une profonde remise en cause des mathématiques, notamment en refusant l'infini actuel : un nombre réel ne peut être représenté comme une suite infinie de décimales qu'à la condition de disposer d'un moyen effectif de calculer chacune de ces décimales ; on parle alors de réel constructif.
Hermann WeylHermann Weyl (), né le à Elmshorn et mort le à Zurich, est un mathématicien et physicien théoricien allemand du . Il fut le premier, dès 1918, à combiner la relativité générale avec l'électromagnétisme en développant la géométrie de Weyl (ou géométrie conforme) et en introduisant la notion de jauge. L'invariance de jauge est à la base du modèle standard et reste un ingrédient fondamental pour la physique théorique moderne. Ses recherches en mathématiques portèrent essentiellement sur la topologie, la géométrie et l'algèbre.
Georg CantorGeorg Cantor est un mathématicien allemand, né le à Saint-Pétersbourg (Empire russe) et mort le à Halle (Empire allemand). Il est connu pour être le créateur de la théorie des ensembles. Il établit l'importance de la bijection entre les ensembles, définit les ensembles infinis et les ensembles bien ordonnés. Il prouva également que les nombres réels sont « plus nombreux » que les entiers naturels. En fait, le théorème de Cantor implique l'existence d'une « infinité d'infinis ».
Principia MathematicaLes Principia Mathematica sont une œuvre en trois volumes d'Alfred North Whitehead et Bertrand Russell, publiés en 1910-1913. Cette œuvre a pour sujet les fondements des mathématiques. Avec en particulier l'idéographie de Gottlob Frege, c'est un ouvrage fondamental, dans la mesure où il participe de façon décisive à la naissance de la logique moderne. Entre 1898 et 1903, Whitehead travaille à l'édition d'un deuxième volume de son .
Relation (mathématiques)Une relation entre objets mathématiques d'un certain domaine est une propriété qu'ont, ou non, entre eux certains de ces objets ; ainsi la relation d'ordre strict, notée « < », définie sur N l'ensemble des entiers naturels : 1 < 2 signifie que 1 est en relation avec 2 par cette relation, et on sait que 1 n'est pas en relation avec 0 par celle-ci. Une relation est très souvent une relation binaire, définie sur un ensemble comme la relation d'ordre strict sur N, ou entre deux ensembles.
Logique classiqueLa logique classique est la première formalisation du langage et du raisonnement mathématique développée à partir de la fin du en logique mathématique. Appelée simplement logique à ses débuts, c'est l'apparition d'autres systèmes logiques formels, notamment de la logique intuitionniste, qui a suscité l'adjonction de l'adjectif classique au terme logique. À cette époque, le terme de logique classique fait référence à la logique aristotélicienne.
Axiomes de Peanovignette|Giuseppe Peano En mathématiques, les axiomes de Peano sont des axiomes pour l'arithmétique proposés initialement à la fin du par Giuseppe Peano, et qui connaissent aujourd'hui plusieurs présentations qui ne sont pas équivalentes, suivant la théorie sous-jacente, théorie des ensembles, logique du second ordre ou d'ordre supérieur, ou logique du premier ordre. Richard Dedekind avait proposé une formalisation assez proche, sous une forme non axiomatique.