Concepts associés (29)
Loi de Peirce
En logique, la loi de Peirce est la proposition où désigne l'implication. Elle a été proposée par le logicien et philosophe Charles Sanders Peirce. Cette formule, valide en logique classique, est invalide en logique intuitionniste. Cela signifie que, bien que ne possédant pas de référence explicite à la négation, la loi de Peirce est directement liée à la façon dont on traite celle-ci. Ainsi, on peut montrer que, en logique intuitionniste, il y a équivalence entre loi de Peirce, règle d'élimination de la double négation ou principe du tiers exclu.
Théorème d'élimination des coupures
En logique mathématique, le théorème d'élimination des coupures (ou Hauptsatz de Gentzen) est le résultat central établissant l'importance du calcul des séquents. Il a été initialement prouvé par Gerhard Gentzen en 1934 dans son article historique « Recherches sur la déduction logique » pour les systèmes LJ et LK formalisant la logique intuitionniste et classique, respectivement.
Law of thought
The laws of thought are fundamental axiomatic rules upon which rational discourse itself is often considered to be based. The formulation and clarification of such rules have a long tradition in the history of philosophy and logic. Generally they are taken as laws that guide and underlie everyone's thinking, thoughts, expressions, discussions, etc. However, such classical ideas are often questioned or rejected in more recent developments, such as intuitionistic logic, dialetheism and fuzzy logic.
Graham Priest
Graham Priest, né en 1948, est un philosophe et un logicien contemporain à la double nationalité britannique et australienne. Spécialiste des logiques non-classiques, il est l’un des pionniers de la paraconsistance moderne. Il est actuellement Professeur distingué de philosophie au Centre d’études supérieures de la City University of New York et Professeur émérite de la Chaire de philosophie Boyce Gibson à l’Université de Melbourne. Issu d’un milieu ouvrier, Graham Priest est né et a grandi dans le Sud de Londres.
Principe d'identité
Le principe d'identité affirme qu'une chose, considérée sous un même rapport, est identique à elle-même. On l'exprime sous la forme : « ce qui est est » (A est A) et « ce qui n'est pas n'est pas » : il y a cohérence de l'être, la réalité a une certaine immuabilité, l'arbre reste arbre : il y a cohérence de la connaissance ou du langage, toute désignation doit conserver une permanence, le mot « arbre » doit désigner l'arbre. Le principe d'identité présente donc deux versions.
Intermediate logic
In mathematical logic, a superintuitionistic logic is a propositional logic extending intuitionistic logic. Classical logic is the strongest consistent superintuitionistic logic; thus, consistent superintuitionistic logics are called intermediate logics (the logics are intermediate between intuitionistic logic and classical logic). A superintuitionistic logic is a set L of propositional formulas in a countable set of variables pi satisfying the following properties: 1. all axioms of intuitionistic logic belong to L; 2.
Logique ternaire
La logique ternaire, ou logique 3 états, est une branche du calcul des propositions qui étend l'algèbre de Boole, en considérant, en plus des états VRAI et FAUX, l'état INCONNU. Dans la logique ternaire de Stephen Cole Kleene, les tables de vérité des fonctions de base sont les suivantes : D'une certaine manière, ces propriétés correspondent à l'intuition : par exemple, si on ignore si A est vrai ou faux, son inverse est tout aussi incertain. Les autres fonctions logiques se déduisent de par leur définition, la distributivité continuant à s'appliquer.
Disjunction and existence properties
In mathematical logic, the disjunction and existence properties are the "hallmarks" of constructive theories such as Heyting arithmetic and constructive set theories (Rathjen 2005). The disjunction property is satisfied by a theory if, whenever a sentence A ∨ B is a theorem, then either A is a theorem, or B is a theorem. The existence property or witness property is satisfied by a theory if, whenever a sentence (∃x)A(x) is a theorem, where A(x) has no other free variables, then there is some term t such that the theory proves A(t).
Limited principle of omniscience
In constructive mathematics, the limited principle of omniscience (LPO) and the lesser limited principle of omniscience (LLPO) are axioms that are nonconstructive but are weaker than the full law of the excluded middle. They are used to gauge the amount of nonconstructivity required for an argument, as in constructive reverse mathematics. These principles are also related to weak counterexamples in the sense of Brouwer. The limited principle of omniscience states : LPO: For any sequence , , ...

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.