Escalier de CantorL'escalier de Cantor, ou l'escalier du diable, est le graphe d'une fonction f continue croissante sur [0, 1], telle que f(0) = 0 et f(1) = 1, qui est dérivable presque partout, la dérivée étant presque partout nulle. Il s'agit cependant d'une fonction continue, mais pas absolument continue. Soit f une fonction continue sur un intervalle I ⊂ R, de dérivée math|f '''. Si f ' est nulle sur I, alors f est constante. C'est une conséquence immédiate du théorème des accroissements finis.
Grand cercleEn géométrie, un grand cercle est un cercle tracé à la surface d'une sphère qui a le même diamètre qu'elle. De manière équivalente, on peut définir un grand cercle comme un cercle tracé sur la sphère ayant le même centre que la sphère ; ou encore, comme l'intersection entre une sphère et un plan passant par le centre de cette sphère ; ou comme un cercle tracé sur la sphère de longueur maximale. Par exemple, que l'on modélise le globe terrestre par une sphère ou que l'on considère l'ellipsoïde, dans ces deux cas l'équateur est un grand cercle.
GéodésiqueEn géométrie, une géodésique est la généralisation d'une ligne droite du plan ou de l'espace euclidien, au cadre des surfaces, ou plus généralement des variétés ou des espaces métriques. Elles sont étroitement liées à la notion de plus court chemin relativement à un calcul de distance sur un tel espace. Ainsi, le plus court chemin (ou les plus courts chemins, s'il en existe plusieurs), entre deux points est toujours une géodésique. Mais plus précisément, on appelle géodésique une courbe qui, à l'échelle locale, relie les points en minimisant la distance.
Distance de ManhattanLa distance de Manhattan, appelée aussi taxi-distance, est la distance entre deux points parcourue par un taxi lorsqu'il se déplace dans une ville où les rues sont agencées selon un réseau ou quadrillage, à l'image de Manhattan. Cette distance fut définie par Hermann Minkowski. Un taxi-chemin est le trajet fait par un taxi lorsqu'il se déplace d'un nœud du réseau à un autre en utilisant les déplacements horizontaux et verticaux du réseau.
Cercle osculateurdroite|vignette|upright=1.3|Au point M de la courbe rouge, le cercle osculateur (en pointillés) approche mieux la courbe qu'un cercle tangent quelconque (passant par N). Son centre O et son rayon R sont le centre de courbure et le rayon de courbure de la courbe en M. En géométrie différentielle, le cercle osculateur ou cercle de courbure en un point d'une courbe est un objet permettant la description locale de cette courbe.
Théorème de Pythagorethumb|right|alt=Triangle rectangle et relation algébrique entre les longueurs de ses côtés.|Relation entre les longueurs des côtés dans un triangle rectangle. Le théorème de Pythagore est un théorème de géométrie euclidienne qui met en relation les longueurs des côtés dans un triangle rectangle. Il s'énonce fréquemment sous la forme suivante : Si un triangle est rectangle, le carré de la longueur de l’hypoténuse (ou côté opposé à l'angle droit) est égal à la somme des carrés des longueurs des deux autres côtés.
Grade (angle)thumb|300px|Boussole graduée en 400 grades ou gon et table de conversion Le grade ou gon ou degré centésimal (par opposition au degré sexagésimal), ou encore gradian, est une unité de mesure des angles ayant pour symbole gr ou g ou gon (gônia : angle, en grec). Un grade vaut radian ou 0,9°. Un angle droit mesure , un angle plat , un tour complet . Le grade a été introduit dans le système métrique décimal pour remplacer le degré dans les mesures angulaires, notamment dans les mesures de latitudes et longitude : au lieu de se diviser en 90 degrés, l'angle droit se divise (par définition) en cent grades.
Cycloïdeframe|right|Le point mobile engendre une cycloïde droite.La cycloïde droite, aussi appelée roue d'Aristote ou roulette de Pascal, est une courbe plane transcendante, trajectoire d'un point fixé à un cercle qui roule sans glisser sur une droite ; elle a été appelée cycloïde pour la première fois par Jean de Beaugrand. Il s'agit donc d'une courbe cycloïdale particulière dont la directrice est une droite et dont le point générateur est situé sur le cercle lui-même ; c'est un cas particulier de trochoïde.
Intégrale elliptiqueLes intégrales elliptiques interviennent dans de nombreux problèmes de physique mathématique : comme par exemple, le calcul de la période d'un pendule aux grandes amplitudes et plus généralement les formes d'équilibre ellipsoïdales des corps en rotation autour d'un axe (planètes, étoiles, goutte d'eau, noyau atomique,...). Une intégrale elliptique est une intégrale de la forme où est une fonction rationnelle à deux variables, est une fonction polynomiale de degré 3 ou 4 avec des racines simples et est une constante.
Notation de Leibnizvignette|Portrait de Gottfried Wilhelm Leibniz En analyse, la notation de Leibniz, nommée en l'honneur de Gottfried Wilhelm Leibniz, consiste en l'usage des notations « d droit » (d) suivies d'une quantité x pour représenter une variation infinitésimale de x, de même que « delta » (Δ) sert à représenter une variation finie. Par extension, c'est une notation couramment utilisée pour écrire les dérivées. En physique, cette notation est interprétée comme une modification infinitésimale (de position, de vitesse.