Espace completEn mathématiques, un espace métrique complet est un espace métrique dans lequel toute suite de Cauchy converge. La propriété de complétude dépend de la distance. Il est donc important de toujours préciser la distance que l'on prend quand on parle d'espace complet. Intuitivement, un espace est complet s'il « n'a pas de trou », s'il « n'a aucun point manquant ». Par exemple, les nombres rationnels ne forment pas un espace complet, puisque n'y figure pas alors qu'il existe une suite de Cauchy de nombres rationnels ayant cette limite.
Ensemble partiellement ordonnéEn mathématiques, un ensemble partiellement ordonné (parfois appelé poset d'après l'anglais partially ordered set) formalise et généralise la notion intuitive d'ordre ou d'arrangement entre les éléments d'un ensemble. Un ensemble partiellement ordonné est un ensemble muni d'une relation d'ordre qui indique que pour certains couples d'éléments, l'un est plus petit que l'autre. Tous les éléments ne sont pas forcément comparables, contrairement au cas d'un ensemble muni d'un ordre total.
Couple (mathématiques)En mathématiques, un couple de deux objets est la donnée de ces deux objets dans un ordre déterminé. Le couple des deux objets et est noté . Si et sont distincts, le couple est distinct du couple ; en cela, la notion de couple se distingue de la notion de paire où l'ordre des éléments est indifférent. Pour désigner un couple, les anglophones emploient d'ailleurs ordered pair, c’est-à-dire paire ordonnée. Les objets a et b sont appelés respectivement première composante et deuxième composante du couple (a, b).
Suite de Fibonaccivignette|Une juxtaposition de carrés dont les côtés ont pour longueur des nombres successifs de la suite de Fibonacci : 1, 1, 2, 3, 5, 8, 13 et 21. En mathématiques, la suite de Fibonacci est une suite d'entiers dans laquelle chaque terme est la somme des deux termes qui le précèdent. Notée , elle est définie par , et pour . Les termes de cette suite sont appelés nombres de Fibonacci et forment la : vignette|Représentation géométrique de la fraction continue de φ faisant apparaître les nombres de la suite de Fibonacci.
Borne supérieure et borne inférieureEn mathématiques, les notions de borne supérieure et borne inférieure d'un ensemble de nombres réels interviennent en analyse, comme cas particulier de la définition générale suivante : la borne supérieure (ou le supremum) d'une partie d'un ensemble (partiellement) ordonné est le plus petit de ses majorants. Une telle borne n'existe pas toujours, mais si elle existe alors elle est unique. Elle n'appartient pas nécessairement à la partie considérée. Dualement, la borne inférieure (ou l'infimum) d'une partie est le plus grand de ses minorants.
Convergence simpleEn mathématiques, la convergence simple ou ponctuelle est une notion de convergence dans un espace fonctionnel, c’est-à-dire dans un ensemble de fonctions entre deux espaces topologiques. C'est une définition peu exigeante : elle est plus facile à établir que d'autres formes de convergence, notamment la convergence uniforme. Le passage à la limite possède donc moins de propriétés : une suite de fonctions continues peut ainsi converger simplement vers une fonction qui ne l'est pas.
Suite arithmétiqueEn mathématiques, une suite arithmétique est une suite (le plus souvent une suite de réels) dans laquelle chaque terme permet de déduire le suivant en lui ajoutant une constante appelée raison. Cette définition peut s'écrire sous la forme d'une relation de récurrence, pour chaque indice n : Cette relation est caractéristique de la progression arithmétique ou croissance linéaire. Elle décrit bien les phénomènes dont la variation est constante au cours du temps, comme l'évolution d'un compte bancaire à intérêts simples.
Famille (mathématiques)En mathématiques, la notion de famille est une généralisation de celle de suite, suite finie ou suite indexée par tous les entiers naturels. Ainsi on pourra parler, en algèbre linéaire, de la famille de vecteurs qui est une famille finie, ou de la famille dénombrable (un)n ∈ N. Une famille est toujours indexée, même si elle l'est parfois implicitement, par exemple dans les locutions « famille libre » ou « famille génératrice ». Une famille (x) d'éléments x d'un ensemble E, indexée par un ensemble I, lindex, est une application définie sur I à valeurs dans E.
PointwiseIn mathematics, the qualifier pointwise is used to indicate that a certain property is defined by considering each value of some function An important class of pointwise concepts are the pointwise operations, that is, operations defined on functions by applying the operations to function values separately for each point in the domain of definition. Important relations can also be defined pointwise.
Développement décimalEn mathématiques, le développement décimal est une façon d'écrire des nombres réels positifs à l'aide des puissances de dix (d'exposant positif ou négatif). Lorsque les nombres sont des entiers naturels, le développement décimal correspond à l'écriture en base dix. Lorsqu'ils sont décimaux, on obtient un développement décimal limité. Lorsqu'ils sont rationnels, on obtient soit, encore, un développement décimal limité, soit un développement décimal illimité, mais alors nécessairement périodique.