Produit matricielLe produit matriciel désigne la multiplication de matrices, initialement appelé la « composition des tableaux ». Il s'agit de la façon la plus fréquente de multiplier des matrices entre elles. En algèbre linéaire, une matrice A de dimensions m lignes et n colonnes (matrice m×n) représente une application linéaire ƒ d'un espace de dimension n vers un espace de dimension m. Une matrice colonne V de n lignes est une matrice n×1, et représente un vecteur v d'un espace vectoriel de dimension n. Le produit A×V représente ƒ(v).
Vecteur contravariant, covariant et covecteurUn vecteur contravariant est un vecteur, un vecteur covariant est une forme linéaire, encore appelé covecteur, ou encore vecteur dual. Et si on dispose d'un produit scalaire, on peut représenter une forme linéaire (= un vecteur covariant = un covecteur) par un vecteur à l'aide du théorème de représentation de Riesz (cette représentation dépend du choix du produit scalaire).
Variété différentielleEn mathématiques, les variétés différentielles ou variétés différentiables sont les objets de base de la topologie différentielle et de la géométrie différentielle. Il s'agit de variétés, « espaces courbes » localement modelés sur l'espace euclidien de dimension n, sur lesquelles il est possible de généraliser une bonne part des opérations du calcul différentiel et intégral. Une variété différentielle se définit donc d'abord par la donnée d'une variété topologique, espace topologique localement homéomorphe à l'espace R.
Valeur propre, vecteur propre et espace propreEn mathématiques, et plus particulièrement en algèbre linéaire, le concept de vecteur propre est une notion algébrique s'appliquant à une application linéaire d'un espace dans lui-même. Il correspond à l'étude des axes privilégiés, selon lesquels l'application se comporte comme une dilatation, multipliant les vecteurs par une même constante. Ce rapport de dilatation est appelé valeur propre, les vecteurs auxquels il s'applique s'appellent vecteurs propres, réunis en un espace propre.
Opérateur différentielEn mathématiques, et plus précisément en analyse, un opérateur différentiel est un opérateur agissant sur des fonctions différentiables. Lorsque la fonction est à une seule variable, l'opérateur différentiel est construit à partir des dérivées ordinaires. Lorsque la fonction est à plusieurs variables, l'opérateur différentiel est construit à partir des dérivées partielles. Un opérateur différentiel agissant sur deux fonctions est appelé opérateur bidifférentiel.
Algèbre tensorielleEn mathématiques, une algèbre tensorielle est une algèbre sur un corps dont les éléments (appelés tenseurs) sont représentés par des combinaisons linéaires de « mots » formés avec des vecteurs d'un espace vectoriel donné. Les seules relations de dépendance linéaire entre ces mots sont induites par les combinaisons linéaires entre les vecteurs. Si l'espace vectoriel sous-jacent est muni d'une base, son algèbre tensorielle s'identifie avec l'algèbre associative unitaire libre engendrée par cette base.
Trace (algèbre)En algèbre linéaire, la trace d'une matrice carrée A est définie comme la somme de ses coefficients diagonaux et souvent notée Tr(A). La trace peut être vue comme une forme linéaire sur l'espace vectoriel des matrices. Elle vérifie l'identité : Tr(AB) = Tr(BA), et est en conséquence invariante par similitude. De façon voisine, si u est un endomorphisme d'un espace vectoriel de dimension finie sur un corps commutatif K, on peut définir la trace de l'opérateur u, par exemple comme trace de sa matrice dans n'importe quelle base.
Tenseur (mathématiques)Les tenseurs sont des objets mathématiques issus de l'algèbre multilinéaire permettant de généraliser les scalaires et les vecteurs. On les rencontre notamment en analyse vectorielle et en géométrie différentielle fréquemment utilisés au sein de champs de tenseurs. Ils sont aussi utilisés en mécanique des milieux continus. Le présent article ne se consacre qu'aux tenseurs dans des espaces vectoriels de dimension finie, bien que des généralisations en dimension infinie et même pour des modules existent.
Algèbre de WeylEn mathématiques, et plus précisément en algèbre générale, lalgèbre de Weyl est un anneau d'opérateurs différentiels dont les coefficients sont des polynômes à une variable. Cette algèbre (et d'autres la généralisant, appelées elles aussi algèbres de Weyl) a été introduite par Hermann Weyl en 1928 comme outil d'étude du principe d'incertitude en mécanique quantique. Les éléments de l'algèbre de Weyl sont de la forme où les fi sont des éléments de F[X], l'anneau des polynômes à une variable sur un corps F, et où ∂X est la dérivée par rapport à X.
Somme directeEn mathématiques, et plus précisément en algèbre, le terme de somme directe désigne des ensembles munis de certaines structures, souvent construits à partir du produit cartésien d'autres ensembles du même type, et vérifiant la propriété universelle de la somme (ou « coproduit ») au sens des catégories. Produit direct (groupes)#Somme directe interne d'une famille de sous-groupes abéliensSomme directe interne de sous-groupes abéliens Soient F et F deux sous-espaces vectoriels d'un espace vectoriel E.