Degree of a field extensionIn mathematics, more specifically field theory, the degree of a field extension is a rough measure of the "size" of the field extension. The concept plays an important role in many parts of mathematics, including algebra and number theory — indeed in any area where fields appear prominently. Suppose that E/F is a field extension. Then E may be considered as a vector space over F (the field of scalars). The dimension of this vector space is called the degree of the field extension, and it is denoted by [E:F].
Représentation galoisienneLa théorie des représentations galoisiennes est l'application naturelle de la théorie des représentations à la théorie algébrique des nombres. Un module galoisien est un module sur lequel agit un groupe de Galois G. Ces modules seront par exemple des groupes d'unités, des groupes des classes, ou des groupes de Galois eux-mêmes. En théorie algébrique des nombres classique, soit L une extension galoisienne d'un corps de nombres K, et soit G le groupe de Galois correspondant.
Ramification (mathématiques)En mathématiques, la ramification est un terme géométrique utilisé au sens de embranchement extérieur, à la façon dont la fonction racine carrée, pour les nombres complexes, peut être vue lorsqu'on considère ses deux branches opposées. Il est aussi utilisé d'une perspective opposée (branches arrivant ensemble) comme lorsqu'un revêtement dégénère en un point de la base, avec effondrement en ce point des fibres de l'application. point de branchement En analyse complexe, le modèle de base peut être pris comme l'application dans le plan complexe, proche de z = 0.
Théorie des corps de classesvignette|Les racines cinquièmes de l'unité dans le plan complexe. Ajouter ces racines aux nombres rationnels génère une extension abélienne. En mathématiques, la théorie des corps de classes est une branche majeure de la théorie algébrique des nombres qui a pour objet la classification des extensions abéliennes, c'est-à-dire galoisiennes et de groupe de Galois commutatif, d'un corps commutatif donné. Plus précisément, il s'agit de décrire et de construire ces extensions en termes de propriétés arithmétiques du corps de base lui-même.
Endomorphisme de FrobeniusEn mathématiques, l'endomorphisme de Frobenius, nommé ainsi en l'honneur de Georg Ferdinand Frobenius, est un endomorphisme d'anneau commutatif défini de façon naturelle à partir de la caractéristique. Il est particulièrement utilisé dans le contexte de la théorie de Galois, soit dans le cas des corps de caractéristique non nulle et plus spécifiquement dans le cas des corps finis et dans la théorie des corps de classes. Si le corps est fini, il s'agit alors d'un automorphisme.
Groupe des classes d'idéauxEn mathématiques, et plus précisément en algèbre, la théorie des corps de nombres – les extensions finies du corps Q des rationnels – fait apparaître un groupe abélien fini construit à partir de chacun de ces corps : son groupe des classes d'idéaux. Les premiers groupes de classes rencontrés en algèbre furent des groupes de classes de formes quadratiques : dans le cas des formes quadratiques binaires, dont l'étude a été faite par Gauss, une loi de composition est définie sur certaines classes d'équivalence de formes.
Corps de décompositionEn mathématiques et plus précisément en algèbre dans la théorie des corps commutatifs, un corps de décomposition, ou parfois corps des racines ou encore corps de déploiement, d'un polynôme P non nul est une extension de corps minimale sur laquelle P est scindé. On montre qu'un polynôme non nul possède toujours un corps de décomposition, unique à isomorphisme près, et que celui-ci est une extension finie et normale. Si de plus le polynôme est séparable, c'est une extension de Galois.
Théorème des unités de DirichletEn théorie algébrique des nombres, le théorème des unités de Dirichlet détermine, pour un corps de nombres K – c'est-à-dire pour une extension finie du corps Q des nombres rationnels –, la structure du « groupe des unités » (ou : groupe des inversibles) de l'anneau de ses entiers algébriques. Il établit que ce groupe est isomorphe au produit d'un groupe cyclique fini et d'un groupe abélien libre de rang où r désigne le nombre de morphismes de K dans R et r le nombre de paires de morphismes conjugués de K dans C à valeurs non toutes réelles.
Tensor product of fieldsIn mathematics, the tensor product of two fields is their tensor product as algebras over a common subfield. If no subfield is explicitly specified, the two fields must have the same characteristic and the common subfield is their prime subfield. The tensor product of two fields is sometimes a field, and often a direct product of fields; In some cases, it can contain non-zero nilpotent elements. The tensor product of two fields expresses in a single structure the different way to embed the two fields in a common extension field.
Groupe abélien de type finiEn mathématiques, un groupe abélien de type fini est un groupe abélien qui possède une partie génératrice finie. Autrement dit : c'est un module de type fini sur l'anneau Z des entiers relatifs. Par conséquent, les produits finis, les quotients, mais aussi les sous-groupes des groupes abéliens de type fini sont eux-mêmes de type fini. Un théorème de structure des groupes abéliens de type fini permet d'expliciter la liste complète de ces groupes à isomorphisme près ; il montre notamment que tout groupe abélien de type fini est un produit fini de groupes monogènes.