Hypothèse de RiemannEn mathématiques, l'hypothèse de Riemann est une conjecture formulée en 1859 par le mathématicien allemand Bernhard Riemann, selon laquelle les zéros non triviaux de la fonction zêta de Riemann ont tous une partie réelle égale à 1/2. Sa démonstration améliorerait la connaissance de la répartition des nombres premiers et ouvrirait des nouveaux domaines aux mathématiques. Cette conjecture constitue l'un des problèmes non résolus les plus importants des mathématiques du début du : elle est l'un des vingt-trois fameux problèmes de Hilbert proposés en 1900, l'un des sept problèmes du prix du millénaire et l'un des dix-huit problèmes de Smale.
Postulat de BertrandEn mathématiques, le postulat de Bertrand affirme qu'entre un entier et son double, il existe toujours au moins un nombre premier. Plus précisément, l'énoncé usuel est le suivant : Le postulat de Bertrand est aussi connu sous le nom de théorème de Tchebychev, depuis que Pafnouti Tchebychev l’a démontré en 1850. L'énoncé usuel du postulat de Bertrand : 1. Pour tout entier , il existe un nombre premier tel que . est équivalent aux quatre suivants : 2. Pour tout entier , il existe un nombre premier tel que . 3.
Nombre de SkewesEn mathématiques, plus précisément en théorie des nombres, le nombre de Skewes fait référence à plusieurs nombres extrêmement grands utilisés par le mathématicien sud-africain Stanley Skewes. Ces nombres sont des majorants du plus petit nombre naturel x pour lequel où π est la fonction de compte des nombres premiers et li le logarithme intégral. John Edensor Littlewood, professeur de Skewes, avait démontré en 1914 qu'il existe de tels nombres (et donc, un plus petit parmi eux) et trouvé que la différence π(x) – li(x) change de signe une infinité de fois.
Logarithme intégralEn mathématiques, le logarithme intégral li est une fonction spéciale définie en tout nombre réel strictement positif x ≠ 1 par l'intégrale : où ln désigne le logarithme népérien. La fonction n'est pas définie en t = 1, et l'intégrale pour x > 1 doit être interprétée comme la valeur principale de Cauchy : Quand x tend vers +∞, on a l'équivalence c'est-à-dire que D'après le théorème des nombres premiers, la fonction de compte des nombres premiers π(x) est équivalente à x/ln(x), donc à li(x), qui en fournit par ailleurs une meilleure approximation.
John Edensor LittlewoodJohn Edensor Littlewood (Rochester (Kent), – Cambridge, ) est un mathématicien britannique. Littlewood naît en 1885 à Rochester, Kent, il est le fils aîné d'Edward Thornton Littlewood et Sylvia Maud (née Ackland). En 1892, son père accepte le poste de directeur d'une école à Wynberg, au Cap, en Afrique du Sud, et y emmène sa famille. Littlewood revient en Angleterre en 1900 pour entrer à la St Paul's School, où il devient étudiant de l'influent géomètre algébrique Francis Sowerby Macaulay.
Atle SelbergAtle Selberg (né le à Langesund (Norvège) et mort le à Princeton (New Jersey)) est un mathématicien norvégien connu pour son travail en théorie analytique des nombres et dans la théorie des formes automorphes, en particulier en liaison avec la théorie spectrale. Dès sa jeunesse, Selberg a été influencé par l'œuvre de Ramanujan. Il a fait ses études à l'université d'Oslo et soutenu son doctorat en 1943. Il a été élève de Viggo Brun. Durant la Seconde Guerre mondiale, il a travaillé seul à cause de l'occupation de la Norvège par l'Allemagne nazie.
Théorème des nombres premiersvignette|Une illustration du théorème des nombres premiers : en rouge, le nombre de nombres premiers inférieurs ou égaux à x ; en vert, une approximation utilisant ; en bleu, une approximation utilisant l'intégrale logarithmique . En mathématiques, et plus précisément en théorie analytique des nombres, le théorème des nombres premiers, démontré indépendamment par Hadamard et La Vallée Poussin en 1896, est un résultat concernant la distribution asymptotique des nombres premiers.
Théorie analytique des nombresdroite|vignette|La fonction zêta de Riemann ζ(s) dans le plan complexe. La couleur d'un point s code la valeur de ζ(s) : les couleurs proches du noir indiquent des valeurs proches de zéro, alors que la teinte code l'argument de la valeur. En mathématiques, la théorie analytique des nombres est une branche de la théorie des nombres qui utilise des méthodes d'analyse mathématique pour résoudre des problèmes concernant les nombres entiers.
Prolongement analytiqueEn analyse complexe, la théorie du prolongement analytique détaille l'ensemble des propriétés et techniques relatives au prolongement des fonctions holomorphes (ou analytiques). Elle considère d'abord la question du prolongement dans le plan complexe. Puis elle aborde des formes plus générales d'extension qui permettent de prendre en compte les singularités et les complications topologiques qui les accompagnent. La théorie fait alors intervenir soit le concept assez ancien et peu opérant de fonction multiforme, soit le concept plus puissant de surface de Riemann.
Fonction arithmétiqueEn théorie des nombres, une fonction arithmétique f est une application définie sur l'ensemble des entiers strictement positifs et à valeurs dans l'ensemble des nombres complexes. En d'autres termes, une fonction arithmétique n'est rien d'autre qu'une suite de nombres complexes, indexée par N*. Les fonctions arithmétiques les plus étudiées sont les fonctions additives et les fonctions multiplicatives. Une opération importante sur les fonctions arithmétiques est le produit de convolution de Dirichlet.