Trivial (mathématiques)En mathématiques, on qualifie de trivial un énoncé dont on juge la vérité évidente à la lecture, ou un objet mathématique dont on estime que l'existence va de soi et que son étude n'a pas d'intérêt ; il s'agit donc avant tout d'une notion subjective. L'adjectif trivial vient du latin trivialis, lui même dérivé du latin trivium qui désignait un carrefour à trois voies, par opposition à quadrivium qui désignait un carrefour à quatre voies.
Variété (géométrie)En mathématiques, et plus particulièrement en géométrie, la notion de variété peut être appréhendée intuitivement comme la généralisation de la classification qui établit qu'une courbe est une variété de dimension 1 et une surface est une variété de dimension 2. Une variété de dimension n, où n désigne un entier naturel, est un espace topologique localement euclidien, c'est-à-dire dans lequel tout point appartient à une région qui s'apparente à un tel espace.
Courbe remplissanteEn analyse mathématique, une courbe remplissante (parfois appelée courbe de remplissage) est une courbe dont l' contient le carré unité entier (ou plus généralement un hypercube de dimension n). En raison du fait que le mathématicien Giuseppe Peano (1858–1932) a été le premier à découvrir dans le plan (en dimension 2) une telle courbe, les courbes remplissantes sont parfois appelées courbes de Peano, mais cette dénomination fait maintenant référence à la courbe de Peano qui désigne cet exemple spécifique de courbe remplissante découvert par Peano.
Intégrale de LebesgueEn mathématiques, l’intégrale de Lebesgue désigne à la fois une théorie relative à l'intégration et à la mesure, et le résultat de l'intégration d'une fonction à valeurs réelles définie sur (ou sur ) muni de la mesure de Lebesgue. Généralisant l'intégrale de Riemann, l'intégrale de Lebesgue joue un rôle important en analyse, en théorie des probabilités et dans beaucoup d'autres domaines des mathématiques. Dans les cas simples, l'intégrale d'une fonction positive f peut être vue comme l'aire comprise entre l'axe des x (l'axe horizontal) et la courbe de la fonction f.
Escalier de CantorL'escalier de Cantor, ou l'escalier du diable, est le graphe d'une fonction f continue croissante sur [0, 1], telle que f(0) = 0 et f(1) = 1, qui est dérivable presque partout, la dérivée étant presque partout nulle. Il s'agit cependant d'une fonction continue, mais pas absolument continue. Soit f une fonction continue sur un intervalle I ⊂ R, de dérivée math|f '''. Si f ' est nulle sur I, alors f est constante. C'est une conséquence immédiate du théorème des accroissements finis.
Intégrale impropreEn mathématiques, lintégrale impropre (ou intégrale généralisée) désigne une extension de l'intégrale usuelle, définie par une forme de passage à la limite dans des intégrales. On note en général les intégrales impropres sans les distinguer des véritables intégrales ou intégrales définies, ainsi : est un exemple classique d'intégrale impropre convergente, mais qui n'est pas définie au sens des théories de l'intégration usuelles (que ce soit l'intégration des fonctions continues par morceaux, l'intégrale de Riemann ou celle de Lebesgue ; une exception notable est la théorie de l'intégration de Kurzweil-Henstock).
Support de fonctionLe support d'une fonction ou d'une application est la partie de son ensemble de définition sur laquelle se concentre l'information utile de cette fonction. Pour une fonction numérique, c'est la partie du domaine où elle n'est pas nulle et pour un homéomorphisme ou une permutation, la partie du domaine où elle n'est pas invariante. Soit une fonction à valeurs complexes, définie sur un espace topologique . Définition : On appelle support de , noté , l'adhérence de l'ensemble des points en lesquels la fonction ne s'annule pas.
Space (mathematics)In mathematics, a space is a set (sometimes called a universe) with some added structure. While modern mathematics uses many types of spaces, such as Euclidean spaces, linear spaces, topological spaces, Hilbert spaces, or probability spaces, it does not define the notion of "space" itself. A space consists of selected mathematical objects that are treated as points, and selected relationships between these points. The nature of the points can vary widely: for example, the points can be elements of a set, functions on another space, or subspaces of another space.
Limite supérieure et limite inférieurevignette|upright=1.8|Exemple de recherche de limites inférieure et supérieure. La suite (x) est représentée en bleu. En mathématiques, plus précisément en analyse réelle, les limites inférieures et supérieures sont des outils d'étude des suites de nombres réels. Une telle suite n'est en général ni monotone, ni convergente. L'introduction des limites supérieure et inférieure permet de retrouver, partiellement, de telles propriétés. Il s'agit d'un cas particulier de valeurs d'adhérence de la suite.
Intégrale de RiemannEn mathématiques et plus particulièrement en analyse réelle, l'intégrale de Riemann est une façon de définir l'intégrale, sur un segment, d'une fonction réelle. En termes géométriques, cette intégrale s'interprète comme l'aire du domaine sous la courbe représentative de la fonction, comptée algébriquement. Le procédé général utilisé pour définir l'intégrale de Riemann est l'approximation par des fonctions en escalier, pour lesquelles la définition de l'aire sous la courbe est aisée.