Concepts associés (35)
Série génératrice
En mathématiques, et notamment en analyse et en combinatoire, une série génératrice (appelée autrefois fonction génératrice, terminologie encore utilisée en particulier dans le contexte de la théorie des probabilités) est une série formelle dont les coefficients codent une suite de nombres (ou plus généralement de polynômes) ; on dit que la série est associée à la suite. Ces séries furent introduites par Abraham de Moivre en 1730, pour obtenir des formules explicites pour des suites définies par récurrence linéaire.
Somme (arithmétique)
En mathématiques, la somme de deux nombres est le résultat de leur addition. Les éléments additionnés s’appellent les termes de la somme. Elle se calcule de différentes manières selon le système de numération employé. Du fait de la commutativité et de l'associativité de l'addition, la somme d'un ensemble fini de nombres est bien définie indépendamment de l'ordre dans lequel est faite l'addition, mais il n'existe pas toujours de formule réduite pour l'exprimer.
Équation différentielle ordinaire
En mathématiques, une équation différentielle ordinaire (parfois simplement appelée équation différentielle et abrégée en EDO) est une équation différentielle dont la ou les fonctions inconnues ne dépendent que d'une seule variable; elle se présente sous la forme d'une relation entre ces fonctions inconnues et leurs dérivées successives. Le terme ordinaire est utilisé par opposition au terme équation différentielle partielle (plus communément équation aux dérivées partielles, ou EDP) où la ou les fonctions inconnues peuvent dépendre de plusieurs variables.
Suite définie par récurrence
En mathématiques, une suite définie par récurrence est une suite définie par son (ou ses) premier(s) terme(s) et par une relation de récurrence, qui définit chaque terme à partir du précédent ou des précédents lorsqu'ils existent. Une relation de récurrence est une équation dans laquelle l'expression de plusieurs termes de la suite apparait, par exemple : ou ou ou si l'on se place dans les suites de mots sur l'alphabet : Si la relation de récurrence a une « bonne » présentation, cela permet de calculer l'expression du terme d'indice le plus élevé en fonction de l'expression des autres.
Formule du binôme de Newton
vignette|Visualisation de l'expansion binomiale La formule du binôme de Newton est une formule mathématique donnée par Isaac Newton pour trouver le développement d'une puissance entière quelconque d'un binôme. Elle est aussi appelée formule du binôme ou formule de Newton. Si x et y sont deux éléments d'un anneau (par exemple deux nombres réels ou complexes, deux polynômes, deux matrices carrées de même taille, etc.
Méthode des différences finies
En analyse numérique, la méthode des différences finies est une technique courante de recherche de solutions approchées d'équations aux dérivées partielles qui consiste à résoudre un système de relations (schéma numérique) liant les valeurs des fonctions inconnues en certains points suffisamment proches les uns des autres. Cette méthode apparaît comme étant la plus simple à mettre en œuvre car elle procède en deux étapes : d'une part la discrétisation par différences finies des opérateurs de dérivation/différentiation, d'autre part la convergence du schéma numérique ainsi obtenu lorsque la distance entre les points diminue.
Théorème de Taylor
redresse=1.5|vignette|Représentation de la fonction logarithme (en noir) et des approximations de Taylor au point 1 (en vert). En mathématiques, plus précisément en analyse, le théorème de Taylor (ou formule de Taylor), du nom du mathématicien anglais Brook Taylor qui l'établit en 1715, montre qu'une fonction plusieurs fois dérivable au voisinage d'un point peut être approchée par une fonction polynomiale dont les coefficients dépendent uniquement des dérivées de la fonction en ce point.
Approximation affine
En mathématiques, une approximation affine est une approximation d'une fonction au voisinage d'un point à l'aide d'une fonction affine. Une approximation affine sert principalement à simplifier un problème dont on peut obtenir une solution approchée. Deux façons classiques d'obtenir une approximation affine de fonction passent par l'interpolation ou le développement limité à l’ordre 1.
Dérivation numérique
En analyse numérique, les algorithmes de dérivation numérique évaluent la dérivée d'une fonction mathématique ou d'un sous-programme de fonction en utilisant les valeurs de la fonction et peut-être d'autres propriétés connues sur la fonction. droite|255x255px La méthode la plus simple consiste à utiliser des approximations de différences finies. Une simple estimation à deux points consiste à calculer la pente d'une droite sécante proche passant par les points et .
Interpolation newtonienne
En analyse numérique, l'interpolation newtonienne, du nom d'Isaac Newton, est une méthode d'interpolation polynomiale permettant d'obtenir le polynôme de Lagrange comme combinaison linéaire de polynômes de la « base newtonienne ». Contrairement à l'interpolation d'Hermite par exemple, cette méthode ne diffère de l'interpolation lagrangienne que par la façon dont le polynôme est calculé, le polynôme d'interpolation qui en résulte est le même. Pour cette raison on parle aussi plutôt de la forme de Newton du polynôme de Lagrange.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.