Concepts associés (35)
Fonction caractéristique (probabilités)
En mathématiques et plus particulièrement en théorie des probabilités et en statistique, la fonction caractéristique d'une variable aléatoire réelle est une quantité qui détermine de façon unique sa loi de probabilité. Si cette variable aléatoire a une densité, alors la fonction caractéristique est la transformée de Fourier inverse de la densité. Les valeurs en zéro des dérivées successives de la fonction caractéristique permettent de calculer les moments de la variable aléatoire.
Processus stochastique
Un processus ou processus aléatoire (voir Calcul stochastique) ou fonction aléatoire (voir Probabilité) représente une évolution, discrète ou à temps continu, d'une variable aléatoire. Celle-ci intervient dans le calcul classique des probabilités, où elle mesure chaque résultat possible (ou réalisation) d'une épreuve. Cette notion se généralise à plusieurs dimensions. Un cas particulier important, le champ aléatoire de Markov, est utilisé en analyse spatiale.
Loi des grands nombres
vignette|Visualisation de la loi des grands nombres En mathématiques, la loi des grands nombres permet d’interpréter la probabilité comme une fréquence de réalisation, justifiant ainsi le principe des sondages, et présente l’espérance comme une moyenne. Plus formellement, elle signifie que la moyenne empirique, calculée sur les valeurs d’un échantillon, converge vers l’espérance lorsque la taille de l’échantillon tend vers l’infini. Plusieurs théorèmes expriment cette loi, pour différents types de convergence en théorie des probabilités.
Convergence de variables aléatoires
Dans la théorie des probabilités, il existe différentes notions de convergence de variables aléatoires. La convergence (dans un des sens décrits ci-dessous) de suites de variables aléatoires est un concept important de la théorie des probabilités utilisé notamment en statistique et dans l'étude des processus stochastiques. Par exemple, la moyenne de n variables aléatoires indépendantes et identiquement distribuées converge presque sûrement vers l'espérance commune de ces variables aléatoires (si celle-ci existe).
Histogramme
thumb|Exemple d'histogramme. Échantillon de 100 valeurs générées pour une distribution normale N(0,1). En statistique, un histogramme est une représentation graphique permettant de représenter la répartition empirique d'une variable aléatoire en la représentant avec des colonnes correspondant chacune à une classe. L’histogramme est un moyen rapide pour étudier la répartition d’une variable. Il peut être, en particulier utilisé en gestion de la qualité lorsque les données sont obtenues lors d’une fabrication.
Loi normale multidimensionnelle
En théorie des probabilités, on appelle loi normale multidimensionnelle, ou normale multivariée ou loi multinormale ou loi de Gauss à plusieurs variables, la loi de probabilité qui est la généralisation multidimensionnelle de la loi normale. gauche|vignette|Différentes densités de lois normales en un dimension. gauche|vignette|Densité d'une loi gaussienne en 2D. Une loi normale classique est une loi dite « en cloche » en une dimension.
Variance (mathématiques)
vignette|Exemple d'échantillons pour deux populations ayant la même moyenne mais des variances différentes. La population en rouge a une moyenne de 100 et une variance de 100 (écart-type = SD = standard deviation = 10). La population en bleu a une moyenne de 100 et une variance de (écart-type = SD = 50). En statistique et en théorie des probabilités, la variance est une mesure de la dispersion des valeurs d'un échantillon ou d'une variable aléatoire.
Covariance matrix
In probability theory and statistics, a covariance matrix (also known as auto-covariance matrix, dispersion matrix, variance matrix, or variance–covariance matrix) is a square matrix giving the covariance between each pair of elements of a given random vector. Any covariance matrix is symmetric and positive semi-definite and its main diagonal contains variances (i.e., the covariance of each element with itself). Intuitively, the covariance matrix generalizes the notion of variance to multiple dimensions.
Loi de Pareto
En théorie des probabilités, la loi de Pareto, d'après Vilfredo Pareto, est un type particulier de loi de puissance qui a des applications en sciences physiques et sociales. Elle permet notamment de donner une base théorique au « principe des 80-20 », aussi appelé principe de Pareto. Soit la variable aléatoire X qui suit une loi de Pareto de paramètres (x,k), avec k un réel positif, alors la loi est caractérisée par : Les lois de Pareto sont des lois continues.
Sample mean and covariance
The sample mean (sample average) or empirical mean (empirical average), and the sample covariance or empirical covariance are statistics computed from a sample of data on one or more random variables. The sample mean is the average value (or mean value) of a sample of numbers taken from a larger population of numbers, where "population" indicates not number of people but the entirety of relevant data, whether collected or not. A sample of 40 companies' sales from the Fortune 500 might be used for convenience instead of looking at the population, all 500 companies' sales.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.