Dual d'un polyèdreEn géométrie, il existe plusieurs façons (géométrique, combinatoire) de mettre les polyèdres en dualité : on peut se passer de support géométrique et définir une notion de dualité en termes purement combinatoires, qui s'étend d'ailleurs aux polyèdres et polytopes abstraits. Dans chaque cas, à tout polyèdre est associé un polyèdre appelé dual du premier, tel que : le dual du polyèdre dual est le polyèdre initial, les faces de l'un sont en correspondance avec les sommets de l'autre, en respectant les propriétés d'adjacence.
Parallélépipèdevignette|Perspective cavalière d'un parallélépipède. En géométrie dans l'espace, un parallélépipède (ou parallélipipède) est un solide dont les six faces sont des parallélogrammes. Il est au parallélogramme ce que le cube est au carré et ce que le pavé droit est au rectangle. En géométrie affine, où l'on ne tient compte que de la notion de parallélisme, un parallélépipède peut être aussi défini comme un hexaèdre dont les faces sont parallèles deux à deux ; un prisme dont la base est un parallélogramme.
Regular 4-polytopeIn mathematics, a regular 4-polytope is a regular four-dimensional polytope. They are the four-dimensional analogues of the regular polyhedra in three dimensions and the regular polygons in two dimensions. There are six convex and ten star regular 4-polytopes, giving a total of sixteen. The convex regular 4-polytopes were first described by the Swiss mathematician Ludwig Schläfli in the mid-19th century. He discovered that there are precisely six such figures.
Groupe de CoxeterUn groupe de Coxeter est un groupe engendré par des réflexions sur un espace. Les groupes de Coxeter se retrouvent dans de nombreux domaines des mathématiques et de la géométrie. En particulier, les groupes diédraux, ou les groupes d'isométries de polyèdres réguliers, sont des groupes de Coxeter. Les groupes de Weyl sont d'autres exemples de groupes de Coxeter. Ces groupes sont nommés d'après le mathématicien H.S.M. Coxeter. Un groupe de Coxeter est un groupe W ayant une présentation du type: où est à valeurs dans , est symétrique () et vérifie , si .
CentroïdeEn mathématiques, le centre de masse ou centroïde d’un domaine du plan ou de l’espace est un point d’équilibre pour une certaine mesure sur ce domaine. Il correspond au centre pour un cercle ou une sphère, et plus généralement correspond au centre de symétrie lorsque le domaine en possède un. Mais son existence et son unicité sont garanties dès que le domaine est de mesure finie. En géométrie, cette notion est synonyme de barycentre (pour un ensemble fini de points affectés de masses ponctuelles, le centre de masse est le barycentre des points pondérés).
Optimisation linéairethumb|upright=0.5|Optimisation linéaire dans un espace à deux dimensions (x1, x2). La fonction-coût fc est représentée par les lignes de niveau bleues à gauche et par le plan bleu à droite. L'ensemble admissible E est le pentagone vert. En optimisation mathématique, un problème d'optimisation linéaire demande de minimiser une fonction linéaire sur un polyèdre convexe. La fonction que l'on minimise ainsi que les contraintes sont décrites par des fonctions linéaires, d'où le nom donné à ces problèmes.
CarréEn géométrie euclidienne, un carré est un quadrilatère convexe à quatre côtés de même longueur avec quatre angles droits. C’est donc un polygone régulier, qui est à la fois un losange, un rectangle, et par conséquent aussi un parallélogramme particulier. Dans le plan, un carré est invariant par quatre symétries axiales, par deux rotations d’angle droit et par une symétrie centrale par rapport à l’intersection de ses diagonales. Les premières représentations du carré datent de la préhistoire.
PolyèdreUn polyèdre est une forme géométrique à trois dimensions (un solide géométrique) ayant des faces planes polygonales qui se rencontrent selon des segments de droite qu'on appelle arêtes. Le mot polyèdre, signifiant à plusieurs faces, provient des racines grecques πολύς (polys), « beaucoup » et ἕδρα (hedra), « base », « siège » ou « face ». Un polyèdre est un solide dont toutes les faces sont des polygones. Les côtés de ces polygones sont appelés arêtes. Les extrémités des arêtes sont des points appelés sommets.
Anneau (mathématiques)vignette|Richard Dedekind - 1870 En algèbre, un anneau est un ensemble muni de deux lois de composition interne appelées addition et multiplication, qui vérifient des propriétés analogues à celles de ces opérations sur les entiers relatifs. Plus précisément, deux définitions sont représentées dans la littérature mathématique, selon la considération d'un élément neutre : la majorité des sources récentes définissent un « anneau » comme un anneau unitaire, avec la multiplication ayant un élément neutre ; tandis que, selon de nombreux ouvrages, la présence d'une unité multiplicative n'est pas requise, et ce type d'anneau est ailleurs dénommé pseudo-anneau.
Caractéristique d'EulerEn mathématiques, et plus précisément en géométrie et en topologie algébrique, la caractéristique d'Euler — ou d'Euler-Poincaré — est un invariant numérique, un nombre qui décrit un aspect d'une forme d'un espace topologique ou de la structure de cet espace. Elle est communément notée χ. La caractéristique d'Euler fut définie à l'origine pour les polyèdres et fut utilisée pour démontrer divers théorèmes les concernant, incluant la classification des solides de Platon.