Groupe de LieEn mathématiques, un groupe de Lie est un groupe qui est aussi une variété différentielle. D'une part, un groupe est une structure algébrique munie d'une opération binaire, typiquement une multiplication et son inverse la division, ou alors une addition et son inverse la soustraction. D'autre part, une variété est un espace qui localement ressemble à un espace euclidien. Ici, on s'intéresse à un ensemble qui est à la fois un groupe et une variété : nous pouvons multiplier les éléments entre eux, calculer l'inverse d'un élément.
Oliver HeavisideOliver Heaviside, né le à Camden Town et mort le à Torquay, est un physicien et mathématicien britannique autodidacte. Malgré ses difficultés avec la communauté scientifique, il a beaucoup apporté aux domaines des mathématiques, de la physique et des communications télégraphiques. Heaviside est principalement connu pour avoir reformulé et simplifié les équations de Maxwell sous leur forme actuelle utilisée en calcul vectoriel.
Algèbre à divisionEn mathématiques, et plus précisément en algèbre, une algèbre à division est une algèbre sur un corps avec la possibilité de diviser par un élément non nul (à droite et à gauche). Toutefois, dans une algèbre à division, la multiplication peut ne pas être commutative, ni même associative. Un anneau à division ou corps gauche, comme celui-des quaternions, est une algèbre associative à division sur son centre, ou sur un sous-corps de celui-ci. Soit A un anneau unitaire. L'élément 0 n'est pas inversible, sauf si A est nul.
AutomorphismeUn automorphisme est un isomorphisme d'un objet mathématique X dans lui-même. Le plus souvent, c'est une bijection de X dans X qui préserve la « structure » de X. On peut le voir comme une symétrie de X. Les automorphismes de X forment un groupe. La définition abstraite d'un automorphisme est la suivante : c'est un endomorphisme qui est en même temps un isomorphisme. Autrement dit, c'est un morphisme d'un objet X d'une catégorie donnée dans lui-même, qui est également un isomorphisme.
Matrice orthogonaleUne matrice carrée A (n lignes, n colonnes) à coefficients réels est dite orthogonale si A A = I, où A est la matrice transposée de A et I est la matrice identité. Des exemples de matrices orthogonales sont les matrices de rotation, comme la matrice de rotation plane d'angle θ ou les matrices de permutation, comme Une matrice réelle A est orthogonale si et seulement si elle est inversible et son inverse est égale à sa transposée : A = A. Une matrice carrée est orthogonale si et seulement si ses vecteurs colonnes sont orthogonaux deux à deux et de norme 1.
Quaternions et rotation dans l'espaceLes quaternions unitaires fournissent une notation mathématique commode pour représenter l'orientation et la rotation d'objets en trois dimensions. Comparés aux angles d'Euler, ils sont plus simples à composer et évitent le problème du blocage de cardan. Comparés aux matrices de rotations, ils sont plus stables numériquement et peuvent se révéler plus efficaces. Les quaternions ont été adoptés dans des applications en infographie, robotique, navigation, dynamique moléculaire et en mécanique spatiale des satellites.
Groupe spécial unitaireEn mathématiques, le groupe spécial unitaire de E, où E est un espace hermitien, est le groupe des automorphismes unitaires de E de déterminant 1, la loi de composition interne considérée étant la composition d’automorphismes. Il est noté SU(E). C’est un sous-groupe de U(E), le groupe unitaire des automorphismes de E. De manière générale, on peut définir le groupe spécial unitaire d'une forme sesquilinéaire hermitienne complexe non dégénérée, ou d'une forme sesquilinéaire hermitienne ou antihermitienne non dégénérée sur un espace vectoriel de dimension finie sur certains corps (commutatifs ou non) relativement à une involution.
N-sphèreEn géométrie, la sphère de dimension n, l'hypersphère ou n-sphère est une généralisation de la sphère à un espace euclidien de dimension quelconque. L'hypersphère constitue un des exemples les plus simples de variété, elle est plus précisément une hypersurface de l'espace euclidien , notée en général . Soient E un espace euclidien de dimension n + 1, A un point de E, et R un nombre réel strictement positif. On appelle hypersphère de centre A et de rayon R l'ensemble des points M dont la distance à A vaut R.
Centre d'un groupeEn théorie des groupes, on appelle centre d'un groupe G l'ensemble des éléments de G qui commutent avec tous les autres. Soit G un groupe, noté multiplicativement. Son centre Z est Dans G, Z est un sous-groupe normal — comme noyau du morphisme de groupes ι ci-dessous — et même un sous-groupe caractéristique. Tout sous-groupe de Z est sous-groupe normal de G. Z est abélien. Le centre d'un groupe abélien G est le groupe G entier, c'est-à-dire : Z = G. Le centre du groupe alterné A est trivial pour n ≥ 4.
Mesure de HaarEn mathématiques, une mesure de Haar sur un groupe localement compact est une mesure de Borel quasi-régulière non nulle invariante par translation à gauche. Autrement dit, pour toute partie borélienne B de G, et pour tout g dans G, on a : L'existence d'une mesure de Haar est assurée dans tout groupe localement compact. Elle est finie sur les parties compactes de G. De plus, toute mesure borélienne complexe invariante par translations à gauche s'écrit où est un nombre complexe.