Anneau commutatifUn anneau commutatif est un anneau dans lequel la loi de multiplication est commutative. L’étude des anneaux commutatifs s’appelle l’algèbre commutative. Un anneau commutatif est un anneau (unitaire) dans lequel la loi de multiplication est commutative. Dans la mesure où les anneaux commutatifs sont des anneaux particuliers, nombre de concepts de théorie générale des anneaux conservent toute leur pertinence et leur utilité en théorie des anneaux commutatifs : ainsi ceux de morphismes d'anneaux, d'idéaux et d'anneaux quotients, de sous-anneaux, d'éléments nilpotents.
Anneau localEn mathématiques, et plus particulièrement en algèbre commutative, un anneau local est un anneau commutatif possédant un unique idéal maximal. En géométrie algébrique, les anneaux locaux représentent les fonctions définies au voisinage d'un point donné. Pour tout anneau A, les propriétés suivantes sont équivalentes : A est local ; ses éléments non inversibles forment un idéal (qui sera alors l'idéal maximal de A et coïncidera avec son radical de Jacobson) ; ses éléments non inversibles appartiennent à un même idéal propre ; pour tout élément a de A, soit a soit 1 – a est inversible ; pour tout élément a de A, soit a soit 1 – a est inversible à gauche ; il existe un idéal maximal M tel que pour tout élément a de M, 1 + a est inversible.
Noncommutative ringIn mathematics, a noncommutative ring is a ring whose multiplication is not commutative; that is, there exist a and b in the ring such that ab and ba are different. Equivalently, a noncommutative ring is a ring that is not a commutative ring. Noncommutative algebra is the part of ring theory devoted to study of properties of the noncommutative rings, including the properties that apply also to commutative rings. Sometimes the term noncommutative ring is used instead of ring to refer to an unspecified ring which is not necessarily commutative, and hence may be commutative.
Théorie des anneauxEn mathématiques, la théorie des anneaux porte sur l'étude de structures algébriques qui imitent et étendent les entiers relatifs, appelées anneaux. Cette étude s'intéresse notamment à la classification de ces structures, leurs représentations, et leurs propriétés. Développée à partir de la fin du siècle, notamment sous l'impulsion de David Hilbert et Emmy Noether, la théorie des anneaux s'est trouvée être fondamentale pour le développement des mathématiques au siècle, au travers de la géométrie algébrique et de la théorie des nombres notamment, et continue de jouer un rôle central en mathématiques, mais aussi en cryptographie et en physique.
NilradicalEn algèbre, le nilradical d'un anneau commutatif est un idéal particulier de cet anneau. Soit A un anneau commutatif. Le nilradical de A est l'ensemble des éléments nilpotents de A. En d'autres termes, c'est l'idéal radical de l'idéal réduit à 0. En notant Nil(A) le nilradical de A, on a les énoncés suivants : Nil(A) est un idéal ; l'anneau quotient A/Nil(A) est réduit, c'est-à-dire qu'il n'a pas d'éléments nilpotents hormis 0 ; Nil(A) est inclus dans chaque idéal premier de A ; si s est un élément de A qui n'appartient pas à Nil(A), alors il existe un idéal premier auquel s n'appartient pas ; si A n'est pas l'anneau nul, Nil(A) est l'intersection de tous les idéaux premiers de A et même, de tous ses .
Anneau artinienEn algèbre commutative, un anneau artinien est un anneau vérifiant la condition de chaîne descendante pour ses idéaux. Les anneaux artiniens doivent leur nom au mathématicien autrichien Emil Artin. On dit qu'un anneau commutatif (unitaire) A est un anneau artinien si c'est un A-module artinien, autrement dit, si toute suite décroissante d'idéaux de A est stationnaire. Cela équivaut à dire que tout ensemble non vide d'idéaux de A admet un élément minimal (pour la relation d'inclusion).
Endomorphism ringIn mathematics, the endomorphisms of an abelian group X form a ring. This ring is called the endomorphism ring of X, denoted by End(X); the set of all homomorphisms of X into itself. Addition of endomorphisms arises naturally in a pointwise manner and multiplication via endomorphism composition. Using these operations, the set of endomorphisms of an abelian group forms a (unital) ring, with the zero map as additive identity and the identity map as multiplicative identity.
Module semi-simplethumb|Camille Jordan, auteur du théorème clé de la théorie En mathématiques et plus précisément en algèbre non commutative, un module sur un anneau est dit semi-simple ou complètement réductible s'il est somme directe de sous-modules simples ou, ce qui est équivalent, si chacun de ses sous-modules possède un supplémentaire. Les propriétés des modules semi-simples sont utilisées en algèbre linéaire pour l'analyse des endomorphismes, dans le cadre des anneaux semi-simples et pour la théorie des représentations des groupes.
Module simpleUn module M sur un anneau A est dit simple ou irréductible si M n'est pas le module nul et il n'existe pas de sous-modules de M en dehors de {0} et M. Les Z-modules simples sont les groupes abéliens simples, c'est-à-dire les groupes cycliques d'ordre premier. Les espaces vectoriels simples (sur un corps non nécessairement commutatif) sont les droites vectorielles. Étant donné un anneau A et I un idéal à gauche non nul de A, I est un A-module simple si et seulement si I est un idéal minimal à gauche.
Localisation (mathématiques)En algèbre, la localisation est une des opérations de base de l'algèbre commutative. C'est une méthode qui construit à partir d'un anneau commutatif un nouvel anneau. La construction du corps des fractions est un cas particulier de la localisation. La localisation consiste à rendre inversibles les éléments d'une partie (« partie multiplicative ») de l'anneau. L'exemple le plus connu est le corps des fractions d'un anneau intègre qui se construit en rendant inversibles tous les éléments non nuls de l'anneau.