DiophantienL'adjectif diophantien () (du nom de Diophante d'Alexandrie) s'applique à tout ce qui concerne les équations polynomiales à coefficients entiers, également appelées équations diophantiennes. Les notions qui suivent ont été développées pour venir à bout du dixième problème de Hilbert. Il s'agit de savoir s'il existe un algorithme général permettant de dire si, oui ou non, il existe une solution à une équation diophantienne. Le théorème de Matiyasevich prouve l'impossibilité de l'existence d'un tel algorithme.
Hilbert's second problemIn mathematics, Hilbert's second problem was posed by David Hilbert in 1900 as one of his 23 problems. It asks for a proof that the arithmetic is consistent – free of any internal contradictions. Hilbert stated that the axioms he considered for arithmetic were the ones given in , which include a second order completeness axiom. In the 1930s, Kurt Gödel and Gerhard Gentzen proved results that cast new light on the problem. Some feel that Gödel's theorems give a negative solution to the problem, while others consider Gentzen's proof as a partial positive solution.
Isabelle (logiciel)The Isabelle automated theorem prover is a higher-order logic (HOL) theorem prover, written in Standard ML and Scala. As an LCF-style theorem prover, it is based on a small logical core (kernel) to increase the trustworthiness of proofs without requiring yet supporting explicit proof objects. Isabelle is available inside a flexible system framework allowing for logically safe extensions, which comprise both theories as well as implementations for code-generation, documentation, and specific support for a variety of formal methods.
DialethéismeLe dialethéisme est le point de vue selon lequel certaines propositions peuvent être à la fois vraies et fausses. Plus précisément, c'est la croyance qu'il peut y avoir une proposition vraie dont la négation est également vraie. Ces propositions sont appelées les « contradictions vraies », « dialethéia » ou non-dualismes. Le dialethéisme n'est pas un système formel ; il est, à la place, une thèse sur la vérité qui influe sur la construction d'une logique formelle, souvent basée sur des systèmes de préexistants.
Paradoxe de RichardLe paradoxe de Richard est le paradoxe suivant, qui apparaît lorsqu'une théorie des ensembles n'est pas suffisamment formalisée : Son auteur, le mathématicien français Jules Richard, professeur au lycée de Dijon, le décrivit dans une lettre au directeur de la Revue générale des Sciences Pures et Appliquées. Ce dernier décida de la publier, sous forme d'un court article, dans le numéro du de cette revue. Il a joué un rôle important dans les recherches sur les fondements des mathématiques, en particulier au début du , et a suscité depuis sa publication en 1905 de nombreux commentaires.
Kruskal's tree theoremIn mathematics, Kruskal's tree theorem states that the set of finite trees over a well-quasi-ordered set of labels is itself well-quasi-ordered under homeomorphic embedding. The theorem was conjectured by Andrew Vázsonyi and proved by ; a short proof was given by . It has since become a prominent example in reverse mathematics as a statement that cannot be proved in ATR0 (a second-order arithmetic theory with a form of arithmetical transfinite recursion).
Ordre denseLa notion dordre dense est une notion de mathématiques, en lien avec la notion de relation d'ordre. Un ensemble ordonné (E, ≤) est dit dense en lui-même, ou plus simplement dense, si, pour tout couple (x, y) d'éléments de E tels que x < y il existe un élément z de E tel que x < z < y. Par exemple, tout corps totalement ordonné est dense en lui-même alors que l'anneau Z des entiers relatifs ne l'est pas.
Théorème de TennenbaumTennenbaum's theorem, named for Stanley Tennenbaum who presented the theorem in 1959, is a result in mathematical logic that states that no countable nonstandard model of first-order Peano arithmetic (PA) can be recursive (Kaye 1991:153ff). A structure in the language of PA is recursive if there are recursive functions and from to , a recursive two-place relation
Logique de la prouvabilitéProvability logic is a modal logic, in which the box (or "necessity") operator is interpreted as 'it is provable that'. The point is to capture the notion of a proof predicate of a reasonably rich formal theory, such as Peano arithmetic. There are a number of provability logics, some of which are covered in the literature mentioned in . The basic system is generally referred to as GL (for Gödel–Löb) or L or K4W (W stands for well-foundedness). It can be obtained by adding the modal version of Löb's theorem to the logic K (or K4).
Indépendance (logique mathématique)En logique mathématique, l'indépendance se réfère à la non-prouvabilité d'une proposition relativement à d'autres propositions. Une proposition σ est indépendante d'une théorie de premier ordre donnée T, si T ne prouve pas σ; à savoir, il est impossible de prouver σ à partir de T, et il est également impossible de prouver à partir de T que σ est faux. Parfois, σ est dit être indécidable de T; à ne pas confondre à la « décidabilité », du problème de décision.