In mathematics, the theory of optimal stopping or early stopping is concerned with the problem of choosing a time to take a particular action, in order to maximise an expected reward or minimise an expected cost. Optimal stopping problems can be found in areas of statistics, economics, and mathematical finance (related to the pricing of American options). A key example of an optimal stopping problem is the secretary problem. Optimal stopping problems can often be written in the form of a Bellman equation, and are therefore often solved using dynamic programming. Stopping rule problems are associated with two objects: A sequence of random variables , whose joint distribution is something assumed to be known A sequence of 'reward' functions which depend on the observed values of the random variables in 1: Given those objects, the problem is as follows: You are observing the sequence of random variables, and at each step , you can choose to either stop observing or continue If you stop observing at step , you will receive reward You want to choose a stopping rule to maximize your expected reward (or equivalently, minimize your expected loss) Consider a gain process defined on a filtered probability space and assume that is adapted to the filtration. The optimal stopping problem is to find the stopping time which maximizes the expected gain where is called the value function. Here can take value . A more specific formulation is as follows. We consider an adapted strong Markov process defined on a filtered probability space where denotes the probability measure where the stochastic process starts at . Given continuous functions , and , the optimal stopping problem is This is sometimes called the MLS (which stand for Mayer, Lagrange, and supremum, respectively) formulation. There are generally two approaches to solving optimal stopping problems. When the underlying process (or the gain process) is described by its unconditional finite-dimensional distributions, the appropriate solution technique is the martingale approach, so called because it uses martingale theory, the most important concept being the Snell envelope.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (3)
Temps d'arrêt
vignette|Temps d'impact et temps d'arrêt de trois échantillons de mouvement brownien. En théorie des probabilités, en particulier dans l'étude des processus stochastiques, un temps d'arrêt (également appelé temps d'arrêt optionnel, et correspondant à un temps de Markov ou moment de Markov défini) est une variable aléatoire dont la valeur est interprétée comme le moment auquel le comportement d'un processus stochastique donné présente un certain intérêt.
Théorie de la recherche d'emploi
La théorie de la recherche d'emploi (ou théorie du job search) est une théorie économique qui permet d'expliquer la coexistence entre un chômage volontaire et un chômage involontaire. Elle explique la durée de chômage des agents économiques en la séparant en deux temps : chômage volontaire d'abord, chômage involontaire ensuite.Elle a été développée par George Stigler dans les années 1960. Dans un premier temps, les chômeurs commencent par arbitrer entre les offres d'emplois qui leur sont proposées et le fait de rester au chômage.
Bellman equation
A Bellman equation, named after Richard E. Bellman, is a necessary condition for optimality associated with the mathematical optimization method known as dynamic programming. It writes the "value" of a decision problem at a certain point in time in terms of the payoff from some initial choices and the "value" of the remaining decision problem that results from those initial choices. This breaks a dynamic optimization problem into a sequence of simpler subproblems, as Bellman's “principle of optimality" prescribes.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.