Caractère d'une représentation d'un groupe finiEn mathématiques le caractère d'une représentation d'un groupe fini est un outil utilisé pour analyser les représentations d'un groupe fini. Le caractère d'une représentation (V, ρ) d'un groupe G correspond à l'application de G dans le corps de l'espace de la représentation qui à un élément s associe la trace de l'image de s par ρ. Cette définition n'est pas compatible avec celle des caractères d'un groupe en général qui ne prend ses valeurs que dans l'ensemble des complexes non nuls.
F4 (mathématiques)En mathématiques, F4 est un groupe de Lie exceptionnel de type complexe. Son algèbre de Lie est notée . F4 est de rang 4 et de dimension 52. Sa forme compacte est simplement connexe et son groupe d'automorphismes est le groupe trivial. Sa représentation fondamentale est de dimension 26. La forme compacte réelle de F4 est le groupe d'isométries d'une variété riemannienne de dimension 16, connu également sous le nom de plan projectif octonionique, OP2, ou plan de Cayley.
Lemme de SchurEn mathématiques et plus précisément en algèbre linéaire, le lemme de Schur est un lemme technique utilisé particulièrement dans la théorie de la représentation des groupes. Il a été démontré en 1907 par Issai Schur dans le cadre de ses travaux sur la théorie des représentations d'un groupe fini. Ce lemme est à la base de l'analyse d'un caractère d'une représentation d'un groupe fini ; il permet, par exemple, de caractériser les groupes abéliens finis.
Représentation unitaireEn mathématiques, une représentation unitaire d'un groupe G est une représentation linéaire π de G sur un espace de Hilbert complexe V telle que π(g) est un opérateur unitaire pour tout g ∈ G. La théorie générale est bien développée dans le cas où G est un groupe topologique localement compact (séparé) et les représentations sont fortement continues. La théorie a été largement appliquée en mécanique quantique depuis les années 1920, particulièrement sous l'influence par le livre de 1928 de Hermann Weyl, Gruppentheorie und Quantenmechanik.
Représentation de groupeEn mathématiques, une représentation de groupe décrit un groupe en le faisant agir sur un espace vectoriel de manière linéaire. Autrement dit, on essaie de voir le groupe comme un groupe de matrices, d'où le terme représentation. On peut ainsi, à partir des propriétés relativement bien connues du groupe des automorphismes de l'espace vectoriel, arriver à déduire quelques propriétés du groupe. C'est l'un des concepts importants de la théorie des représentations.
Groupe localement compactUn groupe localement compact est, en mathématiques, un groupe topologique dont l'espace topologique sous-jacent est localement compact. Ces propriétés permettent de définir une mesure, dite mesure de Haar, et donc de calculer des intégrales et des moyennes ou encore une transformée de Fourier. Ces propriétés à la croisée de l'algèbre générale, de la topologie et de la théorie de la mesure sont particulièrement intéressantes, notamment pour leurs applications en physique.
Formule des caractères de WeylEn théorie des représentations, la formule des caractères de Weyl est une description des caractères des représentations irréductibles des groupes de Lie compacts en fonction de leurs plus haut poids. Elle a été prouvée par Hermann Weyl. Il existe une formule étroitement liée pour le caractère d'une représentation irréductible d'une algèbre de Lie semi-simple. Dans l'approche de Weyl de la théorie des représentations des groupes de Lie compacts connexes, la preuve de la formule des caractères est une étape clé pour prouver que chaque élément entier dominant apparaît effectivement comme le plus haut poids d'une représentation irréductible.
Sous-groupe compact maximalEn mathématiques, un sous-groupe compact maximal K d'un groupe topologique G est un sous-groupe K qui est un espace compact, dans la topologie du sous-espace, et maximal parmi ces sous-groupes. Les sous-groupes compacts maximaux jouent un rôle important dans la classification des groupes de Lie et en particulier des groupes de Lie semi-simples. Les sous-groupes compacts maximaux de groupes Lie ne sont pas en général unique, mais sont unique à conjugaison près - ils sont essentiellement uniques.
Fonction centraleEn théorie des groupes, une fonction centrale est une application définie sur un groupe et constante le long de ses classes de conjugaison. Les fonctions centrales à valeurs complexes interviennent dans l'étude des représentations d'un groupe compact ; les fonctions centrales complexes de carré intégrable apparaissent comme les éléments du centre de son , d'où leur nom. Une application définie sur un groupe G est dite centrale si pour tous s et t dans G, on a : ou encore (via la bijection (s,t)↦(u=st,v=s −1)) Pour tout corps K, le groupe G agit naturellement à droite sur l'espace vectoriel KG des applications de G dans K par : s.
Semi-simplicityIn mathematics, semi-simplicity is a widespread concept in disciplines such as linear algebra, abstract algebra, representation theory, , and algebraic geometry. A semi-simple object is one that can be decomposed into a sum of simple objects, and simple objects are those that do not contain non-trivial proper sub-objects. The precise definitions of these words depends on the context. For example, if G is a finite group, then a nontrivial finite-dimensional representation V over a field is said to be simple if the only subrepresentations it contains are either {0} or V (these are also called irreducible representations).