Groupe libreEn théorie des groupes, le groupe libre sur un ensemble S est le groupe F contenant S et caractérisé par la propriété universelle suivante : pour tout groupe G et toute application f : S → G, il existe un unique morphisme de groupes de F dans G prolongeant f. Soit encore, un groupe G est dit libre sur un sous-ensemble S de G si chaque élément de G s'écrit de façon unique comme produit réduit d'éléments de S et d'inverses d'éléments de S (réduit signifiant : sans occurrence d'un sous-produit de la forme x.x).
Produit libreEn mathématiques, et plus particulièrement en théorie des groupes, le produit libre de deux groupes G et H est un nouveau groupe, noté G∗H, qui contient G et H comme sous-groupes, est engendré par les éléments de ces sous-groupes, et constitue le groupe « le plus général » possédant ces propriétés. Le produit libre est le coproduit, ou « somme », dans la catégorie des groupes, c'est-à-dire que la donnée de deux morphismes, de G et H dans un même groupe K, équivaut à celle d'un morphisme de G∗H dans K.
Sous-groupe caractéristiqueDans un groupe G, un sous-groupe H est dit caractéristique lorsqu'il est stable par tout automorphisme de G : strictement caractéristique lorsqu'il est même stable par tout endomorphisme surjectif de G ; pleinement caractéristique, ou encore pleinement invariant, lorsqu'il est même stable par tout endomorphisme de G : Un sous-groupe H de G est sous-groupe caractéristique de G si et seulement si Un sous-groupe caractéristique de G est en particulier stable par tout automorphisme intérieur de G : c'est donc un
Groupe algébriqueEn géométrie algébrique, la notion de groupe algébrique est un équivalent des groupes de Lie en géométrie différentielle ou complexe. Un groupe algébrique est une variété algébrique munie d'une loi de groupe compatible avec sa structure de variété algébrique. Un groupe algébrique sur un corps (commutatif) K est une variété algébrique sur munie : d'un morphisme de K-variétés algébriques (appelé aussi multiplication) .
Groupe classiqueEn mathématiques, les groupes classiques sont différentes familles de groupes de transformations liées à l'algèbre linéaire, principalement les groupes linéaires, orthogonaux, symplectiques et unitaires. Ces groupes peuvent aussi être présentés comme groupes de matrices inversibles, et des quotients de ceux-ci. Les groupes matrices carrées d'ordre n (GL(n, R)), GL(n, C)), le groupe des matrices orthogonales d'ordre n (O(n)) et le groupe des matrices unitaires d'ordre n (U(n)) sont des exemples explicites de groupes classiques.
Indice d'un sous-groupeEn mathématiques, et plus précisément en théorie des groupes, si H est un sous-groupe d'un groupe G, l'indice du sous-groupe H dans G est le nombre de copies distinctes de H que l'on obtient en multipliant à gauche par un élément de G, soit le nombre des xH quand x parcourt G (on peut choisir en fait indifféremment de multiplier à gauche ou à droite). Les classes xH formant une partition, et la multiplication à gauche dans un groupe par un élément donné étant bijective, le produit de l'indice du sous-groupe H dans G par l'ordre de H égale l'ordre de G, ce dont on déduit, pour un groupe fini, le théorème de Lagrange.
Groupe de type de LieEn mathématiques, un groupe de type de Lie G(k) est un groupe (non nécessairement fini) de points rationnels d'un groupe algébrique linéaire réductif G à valeur dans le corps commutatif k. La classification des groupes simples finis montre que les groupes de types de Lie finis forment l'essentiel des groupes finis simples. Des cas particuliers incluent les groupes classiques, les groupes de Chevalley, les groupes de Steinberg et les groupes de Suzuki-Ree.
Graphe de CayleyEn mathématiques, un graphe de Cayley (du nom d'Arthur Cayley) est un graphe qui encode la structure d'un groupe. C'est un outil important pour l'étude de la combinatoire et de la géométrie des groupes. Étant donné un groupe et une partie génératrice de ce groupe, le graphe de Cayley Cay(G,S) est construit comme suit : À chaque élément de , on associe un sommet . À chaque élément de , on associe une couleur . Pour tout et , on trace une arête orientée de couleur du sommet vers le sommet .
Asymptotic analysisIn mathematical analysis, asymptotic analysis, also known as asymptotics, is a method of describing limiting behavior. As an illustration, suppose that we are interested in the properties of a function f (n) as n becomes very large. If f(n) = n2 + 3n, then as n becomes very large, the term 3n becomes insignificant compared to n2. The function f(n) is said to be "asymptotically equivalent to n2, as n → ∞". This is often written symbolically as f (n) ~ n2, which is read as "f(n) is asymptotic to n2".
Groupe abélien libreEn mathématiques, un groupe abélien libre est un groupe abélien qui possède une base, c'est-à-dire une partie B telle que tout élément du groupe s'écrive de façon unique comme combinaison linéaire à coefficients entiers (relatifs) d'éléments de B. Comme les espaces vectoriels, les groupes abéliens libres sont classifiés (à isomorphisme près) par leur rang, défini comme le cardinal d'une base, et tout sous-groupe d'un groupe abélien libre est lui-même abélien libre.