Produit eulérienEn mathématiques, et plus précisément en théorie analytique des nombres, un produit eulérien est un développement en produit infini, indexé par les nombres premiers. Il permet de mesurer la répartition des nombres premiers et est intimement lié à la fonction zêta de Riemann. Il est nommé en l'honneur du mathématicien suisse Leonhard Euler. Euler cherche à évaluer la répartition des nombres premiers p = 2, p = 3, ....
Série de DirichletEn mathématiques, une série de Dirichlet est une série f(s) de fonctions définies sur l'ensemble C des nombres complexes, et associée à une suite (a) de nombres complexes de l'une des deux façons suivantes : Ici, la suite (λ) est réelle, positive, strictement croissante et non bornée. Le domaine de convergence absolue d'une série de Dirichlet est soit un demi-plan ouvert de C, limité par une droite dont tous les points ont même abscisse, soit l'ensemble vide, soit C tout entier. Le domaine de convergence simple est de même nature.
Fonction multiplicativeEn arithmétique, une fonction multiplicative est une fonction arithmétique f : N* → C vérifiant les deux conditions suivantes : f(1) = 1 ; pour tous entiers a et b > 0 premiers entre eux, on a : f (ab) = f(a)f(b). Une fonction complètement multiplicative est une fonction arithmétique g vérifiant : g(1) = 1 ; pour tous entiers a et b > 0, on a : g(ab) = g(a)g(b). Ces dénominations peuvent varier d'un ouvrage à un autre : fonction faiblement multiplicative pour fonction multiplicative, fonction multiplicative ou totalement multiplicative pour fonction complètement multiplicative.
Convolution de DirichletEn mathématiques, la convolution de Dirichlet, encore appelée produit de convolution de Dirichlet ou produit de Dirichlet est une loi de composition interne définie sur l'ensemble des fonctions arithmétiques, c'est-à-dire des fonctions définies sur les entiers strictement positifs et à valeurs dans les nombres complexes. Cette loi de convolution est utilisée en arithmétique, aussi bien algébrique qu'analytique. On la trouve aussi pour résoudre des questions de dénombrement.
Fonction arithmétiqueEn théorie des nombres, une fonction arithmétique f est une application définie sur l'ensemble des entiers strictement positifs et à valeurs dans l'ensemble des nombres complexes. En d'autres termes, une fonction arithmétique n'est rien d'autre qu'une suite de nombres complexes, indexée par N*. Les fonctions arithmétiques les plus étudiées sont les fonctions additives et les fonctions multiplicatives. Une opération importante sur les fonctions arithmétiques est le produit de convolution de Dirichlet.
Fonction somme des puissances k-ièmes des diviseursEn mathématiques, la fonction "somme des puissances k-ièmes des diviseurs", notée , est la fonction multiplicative qui à tout entier n > 0 associe la somme des puissances -ièmes des diviseurs positifs de n, où est un nombre complexe quelconque : La fonction est multiplicative, c'est-à-dire que, pour tous entiers et n premiers entre eux, . En effet, est le produit de convolution de deux fonctions multiplicatives : la fonction puissance -ième et la fonction constante 1.
Fonction de MöbiusEn mathématiques, la fonction de Möbius désigne généralement une fonction multiplicative particulière, définie sur les entiers strictement positifs et à valeurs dans l'ensemble {–1, 0, 1}. Elle intervient dans la formule d'inversion de Möbius. Elle est utilisée dans des branches différentes des mathématiques. Vue sous un angle élémentaire, la fonction de Möbius permet certains calculs de dénombrement, en particulier pour l'étude des p-groupes ou en théorie des graphes.
Symbole de LegendreEn théorie des nombres, le symbole de Legendre est une fonction de deux variables entières à valeurs dans {–1, 0, 1}, qui caractérise les résidus quadratiques. Il a été introduit par Adrien-Marie Legendre, au cours de ses efforts pour démontrer la loi de réciprocité quadratique. Il ne dépend donc que de la classe de a modulo p. Le cas particulier p = 2 est inclus dans cette définition mais sans intérêt : vaut 0 si a est pair et 1 sinon.
Théorème fondamental de l'arithmétiqueEn mathématiques, et en particulier en arithmétique élémentaire, le théorème fondamental de l'arithmétique ou théorème de décomposition en produit de facteurs premiers s'énonce ainsi : tout entier strictement positif peut être écrit comme un produit de nombres premiers d'une unique façon, à l'ordre près des facteurs. Par exemple, nous pouvons écrire que : = 2 × 3 × 17 ou encore = 2 × 3 × 5 et il n'existe aucune autre factorisation de ou sous forme de produits de nombres premiers, excepté par réarrangement des facteurs ci-dessus.