Triangle isocèlevignette|upright|Un triangle isocèle. En géométrie, un triangle isocèle est un triangle ayant au moins deux côtés de même longueur. Plus précisément, un triangle ABC est dit isocèle en A lorsque les longueurs AB et AC sont égales. A est alors le sommet principal du triangle et [BC] sa base. Dans un triangle isocèle, les angles adjacents à la base sont égaux. Un triangle équilatéral est un cas particulier de triangle isocèle, ayant ses trois côtés de même longueur.
Théorème de Pythagorethumb|right|alt=Triangle rectangle et relation algébrique entre les longueurs de ses côtés.|Relation entre les longueurs des côtés dans un triangle rectangle. Le théorème de Pythagore est un théorème de géométrie euclidienne qui met en relation les longueurs des côtés dans un triangle rectangle. Il s'énonce fréquemment sous la forme suivante : Si un triangle est rectangle, le carré de la longueur de l’hypoténuse (ou côté opposé à l'angle droit) est égal à la somme des carrés des longueurs des deux autres côtés.
LosangeUn losange est un quadrilatère dont les côtés ont tous la même longueur, ou encore un parallélogramme ayant au moins deux côtés consécutifs de même longueur. Il était anciennement appelé rhombe du grec ρόμβος (et porte toujours un nom tiré de cette étymologie dans de nombreuses langues, comme rhombus en anglais ou encore rombo en espagnol et en italien). L'adjectif qui lui est relatif est rhombique.
GéométrieLa géométrie est à l'origine la branche des mathématiques étudiant les figures du plan et de l'espace (géométrie euclidienne). Depuis la fin du , la géométrie étudie également les figures appartenant à d'autres types d'espaces (géométrie projective, géométrie non euclidienne ). Depuis le début du , certaines méthodes d'étude de figures de ces espaces se sont transformées en branches autonomes des mathématiques : topologie, géométrie différentielle et géométrie algébrique.
Nombre rationnelUn nombre rationnel est, en mathématiques, un nombre qui peut s'exprimer comme le quotient de deux entiers relatifs. On peut ainsi écrire les nombres rationnels sous forme de fractions notées où , le numérateur, est un entier relatif et , le dénominateur, est un entier relatif non nul. Un nombre entier est un nombre rationnel : il peut s'exprimer sous la forme . Chaque nombre rationnel peut s'écrire d'une infinité de manières différentes sous forme de fraction, par exemple ...
PentagoneEn géométrie, un pentagone est un polygone à cinq sommets, donc cinq côtés et cinq diagonales. Un pentagone est soit simple (convexe ou concave), soit croisé. Le pentagone régulier étoilé est le pentagramme. Le terme « pentagone » dérive du latin pentagonum de même sens, substantivation de l'adjectif pentagonus, lui-même emprunté au grec ancien, πεντάγωνος (pentágônos), « pentagonal », « qui a cinq angles, cinq côtés ». Le terme grec est lui-même construit à partir de πέντε (pénte), « cinq », et γωνία (gônía), « angle ».
École pythagoricienneL’école pythagoricienne fondée par Pythagore (580-495 av. J.-C.) en Grande-Grèce constitue une confrérie à la fois scientifique et religieuse : le pythagorisme repose en effet sur une initiation et propose à ses adeptes un mode de vie éthique et alimentaire, ainsi que des recherches scientifiques sur le cosmos. Bien que le terme d'école philosophique soit contesté et qu'on préfère généralement parler de secte pour le pythagorisme, cette association religieuse, politique et philosophique dura neuf ou dix générations, et a joui d'une très grande notoriété aussi bien dans l'antiquité grecque que romaine.
Similitude (géométrie)En géométrie euclidienne, une similitude est une transformation qui multiplie toutes les distances par une constante fixe, appelée son rapport. L' de toute figure par une telle application est une figure semblable, c'est-à-dire intuitivement « de même forme ». thumb|300px|Dans ce dessin, les objets de même couleur sont semblables. Les isométries, c'est-à-dire les transformations qui conservent les distances sont des cas particuliers de similitudes ; elles transforment des figures en des figures de même forme et de même taille.
DodécaèdreEn géométrie, un dodécaèdre est un polyèdre à douze faces. Puisque chaque face a au moins trois côtés et que chaque arête borde deux faces, un dodécaèdre a au moins 18 arêtes. Certains ont des propriétés particulières comme des faces régulières ou des symétries : le dodécaèdre régulier, seul solide de Platon à faces pentagonales régulières ; le grand dodécaèdre, le petit dodécaèdre étoilé et le grand dodécaèdre étoilé, trois solides de Kepler-Poinsot ; le dodécaèdre rhombique (de première espèce) et le dodécaèdre rhombique de seconde espèce (ou dodécaèdre de Bilinski) dont les faces, toutes identiques, sont des losanges (rhombes).
IcosidodécaèdreLe solide d'Archimède de vingt faces triangulaires et douze faces pentagonales s’appelle un icosidodécaèdre. Le mot “icosidodécaèdre” commence par “icos”, qui signifie “vingt”, soit le nombre de faces du solide de Platon de douze sommets, qui est le dual du “dodécaèdre” de Platon, dont les douze faces sont pentagonales. Cette image‐ci montre l’icosidodécaèdre de face et de dessus, avec deux faces triangulaires horizontales. De dessus le contour est un dodécagone, qui entoure dix triangles et six pentagones.