Anneau intègreUn anneau intègre ou anneau d'intégrité est un anneau commutatif unitaire différent de l'anneau nul et qui ne possède aucun diviseur de zéro. Un anneau commutatif unitaire est dit intègre s'il est différent de l'anneau nul (autrement dit : si 1 ≠ 0) et sans diviseur de zéro, c’est-à-dire : En pratique, travailler dans un anneau intègre permet de résoudre des équations produit-nul.
Conditions de chaîneLes conditions de chaîne (ascendante et descendante) sont deux propriétés mathématiques sur les ordres, identifiées initialement par Emmy Noether dans le contexte de l'algèbre commutative. Sur un ensemble partiellement ordonné (V, ≤), la condition de chaîne ascendante désigne la propriété suivante : toute suite croissante (xn)n ∈ N d'éléments de V est stationnaire, c'est-à-dire constante à partir d'un certain rang (il existe un entier N tel que pour tout n ≥ N, xn = xN) ou également la propriété (équivalente car il s'agit d'une relation d'ordre) V ne contient pas de suite infinie strictement croissante.
Produit tensorielEn mathématiques, le produit tensoriel est un moyen commode de coder les objets multilinéaires. Il est utilisé en algèbre, en géométrie différentielle, en géométrie riemannienne, en analyse fonctionnelle et en physique (mécanique des solides, relativité générale et mécanique quantique). Théorème et définition. Soient et deux espaces vectoriels sur un corps commutatif .
Localisation (mathématiques)En algèbre, la localisation est une des opérations de base de l'algèbre commutative. C'est une méthode qui construit à partir d'un anneau commutatif un nouvel anneau. La construction du corps des fractions est un cas particulier de la localisation. La localisation consiste à rendre inversibles les éléments d'une partie (« partie multiplicative ») de l'anneau. L'exemple le plus connu est le corps des fractions d'un anneau intègre qui se construit en rendant inversibles tous les éléments non nuls de l'anneau.
Transformation naturelleEn théorie des catégories, une transformation naturelle permet de transformer un foncteur en un autre tout en respectant la structure interne (c'est-à-dire la composition des morphismes) des catégories considérées. On peut ainsi la voir comme un morphisme de foncteurs. Soient et deux catégories, F et G deux foncteurs covariants de dans .
Idéal premierEn algèbre commutative, un idéal premier d'un anneau commutatif unitaire est un idéal tel que le quotient de l'anneau par cet idéal est un anneau intègre. Ce concept généralise la notion de nombre premier à des anneaux à la structure moins simple d'accès que l'anneau des entiers relatifs. Ils jouent un rôle particulièrement important en théorie algébrique des nombres. thumb|Richard Dedekind (1831-1916), formalisateur du concept d'idéal.
Théorème de la base de HilbertIn mathematics, specifically commutative algebra, Hilbert's basis theorem says that a polynomial ring over a Noetherian ring is Noetherian. If is a ring, let denote the ring of polynomials in the indeterminate over . Hilbert proved that if is "not too large", in the sense that if is Noetherian, the same must be true for . Formally, Hilbert's Basis Theorem. If is a Noetherian ring, then is a Noetherian ring. Corollary. If is a Noetherian ring, then is a Noetherian ring.
Lemme de ZornEn mathématiques, le lemme de Zorn (ou théorème de Zorn, ou parfois lemme de Kuratowski-Zorn) est un théorème de la théorie des ensembles qui affirme que si un ensemble ordonné est tel que toute chaîne (sous-ensemble totalement ordonné) possède un majorant, alors il possède un élément maximal. Le lemme de Zorn est équivalent à l'axiome du choix en admettant les autres axiomes de la théorie des ensembles de Zermelo-Fraenkel. Le lemme de Zorn permet d'utiliser l'axiome du choix sans recourir à la théorie des ordinaux (ou à celle des bons ordres via le théorème de Zermelo).
Anneau localEn mathématiques, et plus particulièrement en algèbre commutative, un anneau local est un anneau commutatif possédant un unique idéal maximal. En géométrie algébrique, les anneaux locaux représentent les fonctions définies au voisinage d'un point donné. Pour tout anneau A, les propriétés suivantes sont équivalentes : A est local ; ses éléments non inversibles forment un idéal (qui sera alors l'idéal maximal de A et coïncidera avec son radical de Jacobson) ; ses éléments non inversibles appartiennent à un même idéal propre ; pour tout élément a de A, soit a soit 1 – a est inversible ; pour tout élément a de A, soit a soit 1 – a est inversible à gauche ; il existe un idéal maximal M tel que pour tout élément a de M, 1 + a est inversible.
IdéalEn mathématiques, et plus particulièrement en algèbre, un idéal est un sous-ensemble remarquable d'un anneau : c'est un sous-groupe du groupe additif de l'anneau qui est, de plus, stable par multiplication par les éléments de l'anneau. À certains égards, les idéaux s'apparentent donc aux sous-espaces vectoriels — qui sont des sous-groupes additifs stables par une multiplication externe ; à d'autres égards, ils se comportent comme les sous-groupes distingués — ce sont des sous-groupes additifs à partir desquels on peut construire une structure d'anneau quotient.