Cercles inscrit et exinscrits d'un triangleÉtant donnés trois points non alignés A, B et C du plan, il existe quatre cercles tangents aux trois droites (AB), (AC) et (BC). Ce sont le cercle inscrit (celui qui est intérieur au triangle) et les cercles exinscrits du triangle ABC. Bissectrice Un cercle tangent aux trois droites (AB), (BC), (CA) doit posséder un centre équidistant de ces trois droites. Or l'ensemble des points équidistants de deux droites sécantes (d1) et (d2) forme deux droites perpendiculaires, constituées des quatre demi-droites bissectrices chacune d'un des quatre secteurs angulaires construits par les droites (d1) et (d2), et appelées bissectrices des droites (d1) et (d2).
Milieu d'un segmentEn géométrie affine, le milieu d'un segment est l'isobarycentre des deux extrémités du segment. Dans le cadre plus spécifique de la géométrie euclidienne, c'est aussi le point de ce segment situé à égale distance de ses extrémités. Symétrie centrale Deux points distincts A et A sont symétriques par rapport à un point O si et seulement si O est le milieu du segment [AA]. Dans la symétrie centrale de centre O, le symétrique de O est O lui-même. L'ensemble des points du plan équidistants de deux points A et B constitue la médiatrice du segment [AB].
CarréEn géométrie euclidienne, un carré est un quadrilatère convexe à quatre côtés de même longueur avec quatre angles droits. C’est donc un polygone régulier, qui est à la fois un losange, un rectangle, et par conséquent aussi un parallélogramme particulier. Dans le plan, un carré est invariant par quatre symétries axiales, par deux rotations d’angle droit et par une symétrie centrale par rapport à l’intersection de ses diagonales. Les premières représentations du carré datent de la préhistoire.
AngleEn géométrie, la notion générale d'angle se décline en plusieurs concepts. Dans son sens ancien, l'angle est une figure plane, portion de plan délimitée par deux demi-droites. C'est ainsi qu'on parle des angles d'un polygone. Cependant, l'usage est maintenant d'employer le terme « secteur angulaire » pour une telle figure. L'angle peut désigner également une portion de l'espace délimitée par deux plans (angle dièdre). La mesure de tels angles porte couramment mais abusivement le nom d'angle, elle aussi.
Quadrilatère inscriptibleEn géométrie, un quadrilatère inscriptible (ou cyclique ) est un quadrilatère dont les sommets se trouvent tous sur un seul et même cercle. Les sommets sont dits cocycliques. Le quadrilatère est dit inscrit dans le cercle, et le cercle, circonscrit au quadrilatère. Un quadrilatère convexe est inscriptible si et seulement si les quatre médiatrices des côtés sont concourantes. Le point de concours est alors le centre du cercle circonscrit et les médiatrices des diagonales passent par ce point.
Trois dimensionsTrois dimensions, tridimensionnel ou 3D sont des expressions qui caractérisent l'espace qui nous entoure, tel que perçu par notre vision, en ce qui concerne la largeur, la hauteur et la profondeur. Le terme « 3D » est également (et improprement) utilisé (surtout en anglais) pour désigner la représentation en (numérique), le relief des images stéréoscopiques ou autres , et même parfois le simple effet stéréophonique, qui ne peut par construction rendre que de la 2D (il ne s'agit donc que du calcul des projections perspectives, des ombrages, des rendus de matières).
CercleEn géométrie euclidienne, un cercle est une courbe plane fermée constituée de points situés à égale distance d'un point nommé centre. Cette distance est appelée rayon du cercle. Dans le plan euclidien, il s'agit du « rond » qui est associé en français au terme de cercle. Dans un plan non euclidien ou dans le cas de la définition d'une distance non euclidienne, la forme peut être plus complexe. Dans un espace de dimension quelconque, l'ensemble des points placés à une distance constante d'un centre est appelé sphère.
Normale (géométrie)En mathématiques, et plus précisément en géométrie, la droite normale à une courbe ou à une surface en un point est une droite perpendiculaire à la tangente ou au plan tangent en ce point. Tout vecteur directeur de cette droite est appelé vecteur normal à la courbe ou à la surface en ce point. Une convention fréquente pour les surfaces fermées est de particulariser un vecteur normal unitaire, vecteur de norme 1 et orienté vers l'extérieur.
Cône (géométrie)vignette|Illustration à l'article Problemata mathematica... publiée sur les Acta Eruditorum, 1734 En géométrie, un cône est une surface réglée ou bien un solide. Un cône est une surface réglée définie par une droite (d), appelée génératrice, passant par un point fixe S appelé sommet et un point variable décrivant une courbe (c), appelée courbe directrice. On parle aussi dans ce cas de surface conique. Cône de révolution Parmi ces surfaces coniques, la plus étudiée est le cône de révolution dans lequel la courbe directrice est un cercle de centre O situé dans un plan perpendiculaire à (SO).
Angle droitDans le plan euclidien, deux droites sécantes définissent quatre angles deux à deux égaux. Lorsque ces quatre angles sont égaux, chacun forme un angle droit. Les droites sont alors dites perpendiculaires. Le terme angle droit est un calque du latin angulus rectus : rectus signifie « debout », ce qui renvoie à l'image d'une perpendiculaire à une ligne horizontale. Euclide écrivait, au , dans ses Éléments, livre I, Définition 10 : Un angle droit est donc un quart de tour, ou encore la moitié d'un angle plat.