Caractère de DirichletEn mathématiques, et plus précisément en arithmétique modulaire, un caractère de Dirichlet est une fonction particulière sur un ensemble de classes de congruences sur les entiers et à valeurs complexes. Elle a été utilisée par Dirichlet pour la démonstration de son théorème de la progression arithmétique. Dans cet article, n désigne un entier strictement positif et U le groupe des unités (Z/nZ) de l'anneau Z/nZ. Dans le corps C des nombres complexes, le conjugué d'un nombre c est noté .
Convolution de DirichletEn mathématiques, la convolution de Dirichlet, encore appelée produit de convolution de Dirichlet ou produit de Dirichlet est une loi de composition interne définie sur l'ensemble des fonctions arithmétiques, c'est-à-dire des fonctions définies sur les entiers strictement positifs et à valeurs dans les nombres complexes. Cette loi de convolution est utilisée en arithmétique, aussi bien algébrique qu'analytique. On la trouve aussi pour résoudre des questions de dénombrement.
Formule d'inversion de MöbiusLa formule d'inversion de Möbius classique a été introduite dans la théorie des nombres au cours du par August Ferdinand Möbius. Elle a été généralisée plus tard à d'autres « formules d'inversion de Möbius ». La version classique déclare que pour toutes fonctions arithmétiques f et g, on a si et seulement si f est la transformée de Möbius de g, où μ est la fonction de Möbius et les sommes portent sur tous les diviseurs strictement positifs d de n.
Fonction arithmétiqueEn théorie des nombres, une fonction arithmétique f est une application définie sur l'ensemble des entiers strictement positifs et à valeurs dans l'ensemble des nombres complexes. En d'autres termes, une fonction arithmétique n'est rien d'autre qu'une suite de nombres complexes, indexée par N*. Les fonctions arithmétiques les plus étudiées sont les fonctions additives et les fonctions multiplicatives. Une opération importante sur les fonctions arithmétiques est le produit de convolution de Dirichlet.
Transformation de MellinEn mathématiques, la transformation de Mellin est une transformation intégrale qui peut être considérée comme la version de la transformation de Laplace bilatérale. Cette transformation intégrale est fortement reliée à la théorie des séries de Dirichlet, et est souvent utilisée en théorie des nombres et dans la théorie des développements asymptotiques ; elle est également fortement reliée à la transformation de Laplace, à la transformation de Fourier, à la théorie de la fonction gamma et aux fonctions spéciales.
Fonction somme des puissances k-ièmes des diviseursEn mathématiques, la fonction "somme des puissances k-ièmes des diviseurs", notée , est la fonction multiplicative qui à tout entier n > 0 associe la somme des puissances -ièmes des diviseurs positifs de n, où est un nombre complexe quelconque : La fonction est multiplicative, c'est-à-dire que, pour tous entiers et n premiers entre eux, . En effet, est le produit de convolution de deux fonctions multiplicatives : la fonction puissance -ième et la fonction constante 1.
Fonction additive (arithmétique)En théorie des nombres, une fonction additive f est une fonction arithmétique (donc définie sur l'ensemble des entiers strictement positifs à valeurs dans l'ensemble des nombres complexes ) telle que : pour tous entiers a et b > 0 premiers entre eux, f(ab) = f(a) + f(b) (en particulier, f(1) = 0). On dit que f est (une fonction additive) réelle si elle est uniquement à valeurs dans l'ensemble des nombres réels . Une fonction arithmétique f est dite complètement additive lorsque : Pour tous entiers a et b > 0, f(ab) = f(a) + f(b), même si a et b ne sont pas premiers entre eux.
Produit eulérienEn mathématiques, et plus précisément en théorie analytique des nombres, un produit eulérien est un développement en produit infini, indexé par les nombres premiers. Il permet de mesurer la répartition des nombres premiers et est intimement lié à la fonction zêta de Riemann. Il est nommé en l'honneur du mathématicien suisse Leonhard Euler. Euler cherche à évaluer la répartition des nombres premiers p = 2, p = 3, ....
Entier sans facteur carrévignette|Les nombres qui n'ont pas été rayé sont tous les entiers sans facteur carré jusqu'à 120 En mathématiques et plus précisément en arithmétique, un entier sans facteur carré (souvent appelé, par tradition ou commodité quadratfrei ou squarefree) est un entier relatif qui n'est divisible par aucun carré parfait, excepté 1. Par exemple, 10 est sans facteur carré mais 18 ne l'est pas, puisqu'il est divisible par 9 = 3. Les dix plus petits nombres de la des entiers positifs sans facteur carré sont 1, 2, 3, 5, 6, 7, 10, 11, 13, 14.
Indicatrice d'Eulervignette|upright=1.5|Les mille premières valeurs de φ(n). En mathématiques, l'indicatrice d'Euler est une fonction arithmétique de la théorie des nombres, qui à tout entier naturel n non nul associe le nombre d'entiers compris entre 1 et n (inclus) et premiers avec n. Elle intervient en mathématiques pures, à la fois en théorie des groupes, en théorie algébrique des nombres et en théorie analytique des nombres. En mathématiques appliquées, à travers l'arithmétique modulaire, elle joue un rôle important en théorie de l'information et plus particulièrement en cryptologie.