Concepts associés (35)
Fonction multiplicative
En arithmétique, une fonction multiplicative est une fonction arithmétique f : N* → C vérifiant les deux conditions suivantes : f(1) = 1 ; pour tous entiers a et b > 0 premiers entre eux, on a : f (ab) = f(a)f(b). Une fonction complètement multiplicative est une fonction arithmétique g vérifiant : g(1) = 1 ; pour tous entiers a et b > 0, on a : g(ab) = g(a)g(b). Ces dénominations peuvent varier d'un ouvrage à un autre : fonction faiblement multiplicative pour fonction multiplicative, fonction multiplicative ou totalement multiplicative pour fonction complètement multiplicative.
Fonction somme des puissances k-ièmes des diviseurs
En mathématiques, la fonction "somme des puissances k-ièmes des diviseurs", notée , est la fonction multiplicative qui à tout entier n > 0 associe la somme des puissances -ièmes des diviseurs positifs de n, où est un nombre complexe quelconque : La fonction est multiplicative, c'est-à-dire que, pour tous entiers et n premiers entre eux, . En effet, est le produit de convolution de deux fonctions multiplicatives : la fonction puissance -ième et la fonction constante 1.
Formule d'inversion de Möbius
La formule d'inversion de Möbius classique a été introduite dans la théorie des nombres au cours du par August Ferdinand Möbius. Elle a été généralisée plus tard à d'autres « formules d'inversion de Möbius ». La version classique déclare que pour toutes fonctions arithmétiques f et g, on a si et seulement si f est la transformée de Möbius de g, où μ est la fonction de Möbius et les sommes portent sur tous les diviseurs strictement positifs d de n.
Fonction de Möbius
En mathématiques, la fonction de Möbius désigne généralement une fonction multiplicative particulière, définie sur les entiers strictement positifs et à valeurs dans l'ensemble {–1, 0, 1}. Elle intervient dans la formule d'inversion de Möbius. Elle est utilisée dans des branches différentes des mathématiques. Vue sous un angle élémentaire, la fonction de Möbius permet certains calculs de dénombrement, en particulier pour l'étude des p-groupes ou en théorie des graphes.
Racine de l'unité
vignette|Les racines cinquièmes de l'unité (points bleus) dans le plan complexe. En mathématiques, une racine de l'unité est un nombre complexe dont une puissance entière non nulle vaut 1, c'est-à-dire tel qu'il existe un nombre entier naturel non nul n tel que . Ce nombre est alors appelé racine n-ième de l'unité. Une racine n-ième de l'unité est dite primitive si elle est d'ordre exactement n, c'est-à-dire si n est le plus petit entier strictement positif pour lequel l'égalité est réalisée.
Convolution de Dirichlet
En mathématiques, la convolution de Dirichlet, encore appelée produit de convolution de Dirichlet ou produit de Dirichlet est une loi de composition interne définie sur l'ensemble des fonctions arithmétiques, c'est-à-dire des fonctions définies sur les entiers strictement positifs et à valeurs dans les nombres complexes. Cette loi de convolution est utilisée en arithmétique, aussi bien algébrique qu'analytique. On la trouve aussi pour résoudre des questions de dénombrement.
Hypothèse de Riemann
En mathématiques, l'hypothèse de Riemann est une conjecture formulée en 1859 par le mathématicien allemand Bernhard Riemann, selon laquelle les zéros non triviaux de la fonction zêta de Riemann ont tous une partie réelle égale à 1/2. Sa démonstration améliorerait la connaissance de la répartition des nombres premiers et ouvrirait des nouveaux domaines aux mathématiques. Cette conjecture constitue l'un des problèmes non résolus les plus importants des mathématiques du début du : elle est l'un des vingt-trois fameux problèmes de Hilbert proposés en 1900, l'un des sept problèmes du prix du millénaire et l'un des dix-huit problèmes de Smale.
Série de Dirichlet
En mathématiques, une série de Dirichlet est une série f(s) de fonctions définies sur l'ensemble C des nombres complexes, et associée à une suite (a) de nombres complexes de l'une des deux façons suivantes : Ici, la suite (λ) est réelle, positive, strictement croissante et non bornée. Le domaine de convergence absolue d'une série de Dirichlet est soit un demi-plan ouvert de C, limité par une droite dont tous les points ont même abscisse, soit l'ensemble vide, soit C tout entier. Le domaine de convergence simple est de même nature.
Fonction arithmétique
En théorie des nombres, une fonction arithmétique f est une application définie sur l'ensemble des entiers strictement positifs et à valeurs dans l'ensemble des nombres complexes. En d'autres termes, une fonction arithmétique n'est rien d'autre qu'une suite de nombres complexes, indexée par N*. Les fonctions arithmétiques les plus étudiées sont les fonctions additives et les fonctions multiplicatives. Une opération importante sur les fonctions arithmétiques est le produit de convolution de Dirichlet.
Fonction totient de Jordan
En théorie des nombres, la k-ième fonction totient de Jordan J — nommée d'après le mathématicien Camille Jordan — est la fonction arithmétique qui à tout entier n > 0 associe le nombre de k-uplets d'entiers compris entre 1 et n qui, joints à n, forment un k + 1-uplet de nombres premiers entre eux. C'est une généralisation de la fonction φ d'Euler, qui est J. La fonction J est multiplicative et vaut où le produit est indexé par tous les diviseurs premiers p de n.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.