GéométrieLa géométrie est à l'origine la branche des mathématiques étudiant les figures du plan et de l'espace (géométrie euclidienne). Depuis la fin du , la géométrie étudie également les figures appartenant à d'autres types d'espaces (géométrie projective, géométrie non euclidienne ). Depuis le début du , certaines méthodes d'étude de figures de ces espaces se sont transformées en branches autonomes des mathématiques : topologie, géométrie différentielle et géométrie algébrique.
Tangente (géométrie)Tangente vient du latin tangere, toucher : en géométrie, la tangente à une courbe en un de ses points est une droite qui « touche » la courbe au plus près au voisinage de ce point. La courbe et sa tangente forment alors un angle nul en ce point. La notion de tangente permet d'effectuer des approximations : pour la résolution de certains problèmes qui demandent de connaître le comportement de la courbe au voisinage d'un point, on peut assimiler celle-ci à sa tangente. Ceci explique la parenté entre la notion de tangente et le calcul différentiel.
Spirale d'Archimèdethumb|Spirale d'Archimède d'équation r = t/π. thumb|Spirale d'Archimède représentée sur un graphe polaire. La spirale d'Archimède est la courbe d'équation polaire suivante : La spirale d'Archimède est la courbe décrite par un point en déplacement uniforme sur une droite en rotation elle-même uniforme autour d'un point. Le sillon des disques vinyle est une spirale d'Archimède. La spirale dessinée ci-contre est une spirale définie pour des angles positifs.
Triangle de SierpińskiLe triangle de Sierpiński, ou tamis de Sierpińsky, également appelé par Mandelbrot le joint de culasse de Sierpiński, est une fractale, du nom de Wacław Sierpiński qui l'a décrit en 1915. Il peut s'obtenir à partir d'un triangle « plein », par une infinité de répétitions consistant à diviser par deux la taille du triangle puis à les accoler en trois exemplaires par leurs sommets pour former un nouveau triangle. À chaque répétition le triangle est donc de même taille, mais « de moins en moins plein ».
Chaînettevignette|redresse|Courbe de la chaînette pour a = 2, . En mathématiques, la chaînette est une courbe plane transcendante, qui correspond à la forme que prend un câble (ou une chaîne) lorsqu'il est suspendu par ses extrémités et soumis à une force gravitationnelle uniforme (son propre poids). On lui donne parfois le nom de vélaire. vignette|Caténaire, formée d'un câble porteur et d'un câble linéaire inférieur, reliés par des pendules : la chaînette virtuelle se situe entre les deux câbles.
Système de coordonnéesvignette|upright=0.7|Système de coordonnées cartésiennes dans un plan vignette|upright=0.7|Système de coordonnées cartésiennes en 3 dimensions En mathématiques, un système de coordonnées permet de faire correspondre à chaque point d'un espace à N , un (et un seul) N-uplet de scalaires. Dans beaucoup de cas, les scalaires considérés sont des nombres réels, mais il est possible d'utiliser des nombres complexes ou des éléments d'un corps commutatif quelconque.
Droite (mathématiques)En géométrie, le mot droite désigne un objet formé de points alignés. Une droite est illimitée des deux côtés, et sans épaisseur (dans la pratique, elle est représentée, sur une feuille, par une ligne droite ayant bien entendu des limites — celles de la feuille — et une épaisseur — celle du crayon). Pour les Anciens, la droite était un concept « allant de soi », si « évident » que l'on négligeait de préciser de quoi l'on parlait. L'un des premiers à formaliser la notion de droite fut le Grec Euclide dans ses Éléments.
Variété (géométrie)En mathématiques, et plus particulièrement en géométrie, la notion de variété peut être appréhendée intuitivement comme la généralisation de la classification qui établit qu'une courbe est une variété de dimension 1 et une surface est une variété de dimension 2. Une variété de dimension n, où n désigne un entier naturel, est un espace topologique localement euclidien, c'est-à-dire dans lequel tout point appartient à une région qui s'apparente à un tel espace.
Flocon de KochLe flocon de Koch () est l'une des premières courbes fractales à avoir été décrites, bien avant l'invention du terme « fractal(e) » par Benoît Mandelbrot. Elle a été inventée en 1904 par le mathématicien suédois Helge von Koch. thumb|Les 4 premières étapes de la construction. thumb|Les 6 premières courbes successives en animation. On peut la créer à partir d'un segment de droite, en modifiant récursivement chaque segment de droite de la façon suivante : On divise le segment de droite en trois segments de longueurs égales.
Pente (mathématiques)En mathématiques, la pente d'une droite, son coefficient angulaire ou encore son coefficient directeur, est un nombre qui permet de décrire à la fois le sens de l'inclinaison de la droite (si la droite monte quand on la parcourt de la gauche vers la droite, le nombre est positif, si la droite descend, le nombre est négatif) et la force de celle-ci (plus le nombre est grand en valeur absolue, plus la pente est forte). En géométrie cartésienne, le coefficient directeur d'une droite, non parallèle au deuxième axe de coordonnées, désigne le coefficient de l'équation de la droite, .