Couvre la théorie de la stabilité de Lyapunov, les fonctions énergétiques, les matrices à définition positive et l'analyse de la stabilité du système à travers des exemples et des théorèmes.
Couvre les variables aléatoires gaussiennes, les transformations d'affines et les systèmes linéaires entraînés par le bruit gaussien dans le contrôle multivariable.
Explore la programmation dynamique pour un contrôle optimal, en se concentrant sur la stabilité, la politique stationnaire et les solutions récursives.
Explore le gradient de stimulation en ligne pour les problèmes de contrôle non-stochastiques, mettant l'accent sur la réduction des regrets politiques et la stabilité dans le contrôle.
Explore l'échantillonnage exact et approximatif dans les systèmes de contrôle multivariables, en discutant de la stabilité, des valeurs propres et des propriétés du système.
Explore la stabilité des équations différentielles ordinaires, en se concentrant sur la dépendance des solutions, les données critiques, la linéarisation et le contrôle des systèmes non linéaires.